Биологические объекты биотехнологии. Основные объекты биотехнологии и их народнохозяйственное значение

В химико-биологических процессов относятся те из них, в которых используют биологические объекты различной природы (микробной, растительной или животной), например, при производстве продукции различного назначения

Антибиотиков, вакцин, ферментов, кормового и пищевого белка, гормонов, аминокислот, био-газа, органических удобрений и т.п..

Объекты биотехнологии очень разнообразны и диапазон их распространяется от организованных частей (вирусов) до человека (рис. 1.1.).

Биообъекты характеризуются такими показателями, как уровень структурной организации, способность к размножению (или репродукции), наличие или отсутствие собственного метаболизма при культивировании в надлежащих условиях. Что касается характера биообъектов, то под этим следует понимать их структурную организацию. В таком случае биообъекты могут быть молекулами (ферменты, иммуномодуляторы, нуклеозиды, олиго-и полипептиды и др.), организованными частями (вирусы, фаги), одноклеточными (бактерии, дрожжи) и многоклеточными особями (нитчатые высшие грибы, растительные ткани, однослойные культуры клеток млекопитающих), целыми организмами растений и животных. Но даже при использовании биомолекулы как объекта биотехнологии ее первоначальный биосинтез осуществляется в большинстве случаев соответствующими клетками. Следовательно, можно утверждать, что объекты биотехнологии принадлежат или к микробам, или в растительных и животных организмов.

Таким образом, независимо от систематического положения биообъектов на практике используют или естественные организованы частицы (фаги, вирусы) и клетки с естественной генетической информацией, или клетки с искусственно заданной генетической информации, то есть в любом случае используют клетки - то микроорганизм, растение, животное или человек. Сейчас большинство объектов биотехнологии составляют микробы, мир которых очень велик и разнообразен. К ним относятся все прокариоты - бактерии, актиномицеты, риккетсии, сине-зеленые водоросли и часть эукариот - дрожжи, нитчатые грибы, простейшие и водоросли (рис. 1.2). Микробами среди растений есть микроскопические водоросли, а среди животных - микроскопические простейшие. Основой современного биотехнологического производства является микробиологический синтез, т.е. синтез различных веществ с помощью микроорганизмов. Объекты растительного и животного происхождения еще не нашли широкого распространения из-за высокой требовательности к условиям культивирования, что значительно здо-рожчуе производство.

Для реализации биотехнологических процессов важными параметрами биообъектов являются: чистота, скорость размножения клеток и репродукции вирусных частей, активность и стабильность биомоле-кул или биосистем.

При использовании ферментов (в изолированном или иммобилизованных состоянии) как биокатализаторов возникает необходимость охраны их от деструкции банальной сапрофитной микрофлорой, которая может проникать в сферу биотехнологического процесса извне вследствие нестерильности системы, например, из-за негерметичности оборудования. Скорость размножения клеток и репродукция вирусных частей прямо пропорционально отражаются на увеличении биомассы и образовании метаболитов.

Активность и стабильность пребывания биообъектов в активном состоянии - важнейшие показатели их пригодности для длительного использования в биотехнологии.

Главным звеном биотехнологического процесса, определяет его сущность, является клетка. Именно в ней синтезируется целевой продукт. По меткому выражению Овчинникова Ю.А. (1985), клетка - это миниатюрный химический завод, который работает с колоссальной производительностью, с предельной согласованности и по заданной программе. В ней ежеминутно синтезируются сотни сложных соединений, включая гигантские биополимеры, в первую очередь белки.

Методы биотехнологии. Биотехнологии присущи свои специфические методы. Это крупномасштабное глубинное культивирование биообъектов в периодическом, полунепрерывного или непрерывном режиме и выращивания клеток растительных и животных тканей в особых условиях. Биотехнологические методы культивирования биообъектов выполняются в специальном оборудовании, например, в ферментерах выращивают бактерии и грибы при получении антибиотиков, ферментов, органических кислот, некоторых витаминов и т.п..

В подобных ферментерах выращивают некоторые клетки человека (бласты) для получения белка-интерферона, а также некоторые виды растительных клеток. Однако последние чаще выращивают в стационарных условиях на среде с уплотненной (например, агар-зированный) подкладкой в стеклянных или полиэтиленовых емкостях.

Другие методы, используемые в биотехнологии, являются общими, например с методами в микробиологии, биохимии, органической химии и других науках. Особенно нужно выделить методы клеточной и генетической инженерии, лежащие в основе современной биотехнологии.

Отличием методов, используемых в биотехнологии, является то, что они должны выполняться, как правило, в асептических условиях (от греческого а - нет, septicos - гнилостный), т.е. с исключения возможности попадания в среду, где культивируется биообъектов, патогенных и сапрофитных микроорганизмов.

Патогенные виды представляют непосредственную опасность для за-деяний в производстве людей и для потребителей конечных продуктов; сапрофитные виды могут выступать конкурентами за питательные субстраты, антагонистами, продуцентами токсических веществ, включая пирогены.

    Биотехнология как наука и сфера производства. Предмет, цели и задачи биотехнологии, связь с фундаментальными дисциплинами.

Биотехнология - это технологические процессы с использованием биотехнологических систем - живых организмов и компонентов живой клетки. Системы могут быть разными - от микробов и бактерий до ферментов и генов. Биотехнология - это производство, основанное на достижениях современной науки: генетической инженерии, физико-химии ферментов, молекулярной диагностики и молекулярной биологии, селекционной генетики, микробиологии, биохимии, химии антибиотиков.

В сфере производства лекарственных средств биотехнология вытесняет традиционные технологии, открывает принципиально новые возможности. Биотехнологическим способом производят генно-инженерные белки (интерфероны, интерлейкины, инсулин, вакцины против гепатита и т.п.), ферменты, диагностические средства (тест-системы на наркотики, лекарственные вещества, гормоны и т.п.), витамины, антибиотики, биодеградируемые пластмассы, биосовместимые материалы.

Иммунная биотехнология, с помощью которой распознают и выделяют из смесей одиночные клетки, может применяться не только непосредственно в медицине для диагностики и лечения, но и в научных исследованиях, в фармакологической, пищевой и других отраслях промышленности, а также использоваться для получения препаратов, синтезируемых клетками защитной системы организма.

В настоящее время достижения биотехнологии перспективны в следующих отраслях:

    в промышленности (пищевая, фармацевтическая, химическая, нефтегазовая) - использование биосинтеза и биотрансформации новых веществ на основе сконструированных методами генной инженерии штаммов бактерий и дрожжей с заданными свойствами на основе микробиологического синтеза;

    в экологии - повышение эффективности экологизированной защиты растений, разработка экологически безопасных технологий очистки сточных вод, утилизация отходов агропромышленного комплекса, конструирование экосистем;

    в энергетике - применение новых источников биоэнергии, полученных на основе микробиологического синтеза и моделированных фотосинтетических процессов, биоконверсии биомассы в биогаз;

    в сельском хозяйстве - разработка в области растениеводства трансгенных агрокультур, биологических средств защиты растений, бактериальных удобрений, микробиологических методов, рекультивации почв; в области животноводства - создание эффективных кормовых препаратов из растительной, микробной биомассы и отходов сельского хозяйства, репродукция животных на основе эмбриогенетических методов;

В медицине - разработка медицинских биопрепаратов, мо-ноклональных антител, диагностикумов, вакцин, развитие иммунобиотехнологии в направлении повышения чувствительности и специфичности иммуноанализа заболеваний инфекционной и неинфекционной природы.

По сравнению с химической технологией биотехнология имеет следующие основные преимущества:

Возможность получения специфичных и уникальных природных веществ, часть из которых (например, белки, ДНК) еще не удается получать путем химического синтеза;

Проведение биотехнологических процессов при относительно невысоких температурах и давлениях;

Микроорганизмы имеют значительно более высокие скорости роста и накопления клеточной массы, чем другие организмы. Например, с помощью микроорганизмов в ферментере объемом 300 м 3 за сутки можно выработать 1 т белка (365 т/год). Чтобы такое же количество белка в год выработать с помощью крупного рогатого скота, нужно иметь стадо 30 000 голов. Если же использовать для получения такой скорости производства белка бобовые растения, например горох, то потребуется иметь поле гороха площадью 5400 га;

В качестве сырья в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности;

Биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам;

Как правило, технология и аппаратура в биотехнологических производствах более просты и дешевы.

В качестве первоочередной задачи перед биотехнологией стоит создание и освоение производства лекарственных препаратов для медицины: интерферонов, инсулинов, гормонов, антибиотиков, вакцин, моноклональных антител и других, позволяющих осуществлять раннюю диагностику и лечение сердчено-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных заболеваний.

Понятие "биотехнология" собирательное и охватывает такие области, как ферментационная технология, применение биофакторов с использованием иммобилизованных микроорганизмов или энзимов, генная инженерия, иммунная и белковая технологии, технология с использованием клеточных культур как животного, так и растительного происхождения.

Биотехнология - это совокупность технологических методов, в том числе и генной инженерии, использующих живые организмы и биологические процессы для производства лекарственных средств, или наука о разработке и применении живых систем, а также неживых систем биологического происхождения в рамках технологических процессов и индустриального производства.

Современная биотехнология - это химия, где изменение и превращение веществ происходит с помощью биологических процессов. В острой конкуренции успешно развиваются две химии: синтетическая и биологическая.

    Биообъекты как средство производства лечебных, реабилитационных, профилактических и диагностических средств. Классификация и общая характеристика биообъектов.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицеты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, пектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов.

Микробами среди растений являются микроскопические водоросли (Аlgае), а среди животных.- микроскопические простейшие (Рrotozoa). Из эукариот к микробам относятся грибы и, при определенных оговорках, лишайники, которые являются природными симбиотическими ассоциациями микроскопических грибов и микроводорослей или грибов и цианобактерий.

Аcaryotа - безъядерные, Рrосаrуоtа - предъядерные и Еuсаrуоtа - ядерные (от греч. а - нет, рrо - до, еu - хорошо, полностью, саrуоn - ядро). К первому относятея организованные частицы - вирусы и вироиды, ко второму - бактерии, к третьему - все другие организмы (грибы, водоросли, растения, животные).

Микроорганизмы образуют огромное количество вторичных метаболитов, многие из которых также нашли применение, например, антибиотики и другие корректоры гомеостаза клеток млекопитающих.

Пробиотики - препараты на основе биомассы отдельных видов микроорганизмов используются при дисбактериозах для нормализации микрофлоры желудочнокишечного тракта. Микроорганизмы необходимы также при производстве вакцин. Наконец, микробные клетки методами генной инженерии могут быть превращены в продуценты видоспецифических для человека белковых гормонов, белковых факторов неспецифического иммунитета и т.д.

Высшие растения являются традиционным и к настоящему времени все еще наиболее обширным иеточником получения лекарственных средств. При использовании растений в качестве биообъектов основное внимание сосредоточено на вопросах культивирования растительных тканей на искусственных средах (каллусные и суспензионные культуры) и открывающихся при этом новых перспективах.

    Макробиообъекты животного происхождения. Человек как донор и объект иммунизации. Млекопитающие, птицы, рептилии и др.

В последние годы в связи с развитием технологии рекомбинантной ДНК стремительно возрастает важность такого биообъекта как человек, хотя на первый взгляд это кажется парадоксальным.

Однако биообъектом с позиций биотехнологии (при использовании биореакторов) человек стал лишь после реализации возможности клонирования его ДНК (точнее ее экзонов) в клетках микроорганизмов. За счет такого подхода был ликвидирован дефицит сырья для получения видоспецифических белков человека.

Важное значение в биотехнологии имеют макрообъекты, к которым относятся различные животные и птицы. В случае производства иммунной плазмы человек выступает, кроме того, в качестве объекта иммунизации.

Для получения различных вакцин в качестве объектов для размножения вирусов используют органы и ткани, в том числе эмбриональные, различных животных и птиц: Необходимо отметить, что термином «донор» в данном случае обозначен биообъект, поставляющий материал для процесса производства лекарственного средства без ущерба для собственной жизнедеятельности, а термином «донатор» - биообъект, у которого забор материала для производства лекарственного средства оказывается несовместимым с продолжением жизнедеятельности.

Из эмбриональных тканей наиболее широко используемыми являются эмбриональные ткани цыпленка. Особенной выгодой отличаются куриные эмбрионы (по доступности) десяти-двенадцатисуточного возраста, используемые преимущественно для репродукции вирусов и последующего изготовления вирусных вакцин. Куриные эмбрионы введены в вирусологическую практику в 1931 г. Г. М. Вудруфом и Е. У. Гудпасчером. Такие эмбрионы рекомендуют также для выявления, идентификации и определения инфицирующей дозы вирусов, для получения антигенных препаратов, применяемых в серологических реакциях.

Инкубированные при 38°С куриные яйца овоскопируют (просвечивают), отбраковывают, "прозрачные" неоплодотворенные экземпляры и сохраняют оплодотворенные, в которых хорошо видны наполненные кровеносные сосуды хорионаллантоисной оболочки и движения эмбрионов.

Заражение эмбрионов можно проводить вручную и автоматизированно. Последний способ применяют в крупномасштабном производстве, например, противогриппозных вакцин. Материал, содержащий вирусы, вводят с помощью шприца (батареи шприцов) в различные части эмбриона (эмбрионов).

Все этапы работы с куриными эмбрионами после овоскопии проводят в асептичных условиях. Материалом для заражения могут быть суспензия растертой мозговой ткани (применительно к вирусу бешенства), печени, селезенки, почек (применительно к хламидиям орнитоза) и т. д. В целях деконтаминации вирусного материала от бактерий или в целях предотвращения его бактериального загрязнения можно использовать соответствующие антибиотики, например, пенициллин с каким-либо ами-ногликозидом порядка 150 МЕ каждого на 1 мл суспензии виру-сосодержащего материала. Для борьбы с грибковым заражением эмбрионов целесообразно воспользоваться некоторыми антибио-тиками-полиенами (нистатин, амфотерицин В) или отдельными производными бензимидазола (например дактарин и др.).

Чаще всего суспензию вирусного материала вводят в аллантоисную полость или, реже, на хорионаллантоисную оболочку в количестве 0,05-0,1 мл, прокалывая продезинфицированную скорлупу (например, иодированным этанолом) на расчетную глубину. После этого отверстие закрывают расплавленным парафином и эмбрионы помещают в термостат, в котором поддерживается оптимальная температура для репродукции вируса, например 36-37,5°С. Продолжительность инкубации зависит от типа и активности вируса. Обычно через 2-4 суток можно наблюдать изменение оболочек с последующей гибелью эмбрионов. Зараженные эмбрионы контролируют ежедневно 1-2 раза (овоскопируют, поворачивают другой стороной). Погибшие эмбрионы затем передают в отделение сбора вирусного материала. Там их дезинфицируют, аллантоисную жидкость с вирусом отсасывают и переносят в стерильные емкости. Инактивацию вирусов при определенной температуре проводят обычно с помощью формалина, фенола или других веществ. Применяя высокоскоростное центрифугирование или афинную хроматографию (см.), удается получать высокоочищенные вирусные частицы.

Собранный вирусный материал, прошедший соответствующий контроль, подвергают лиофильной сушке. Контролю подлежат следующие показатели: стерильность, безвредность и специфическая активность. Применительно к стерильности имеют в виду отсутствие: живого гомологичного вируса в убитой вакцине, бактерий и грибов. Безвредность и специфическую активность оценивают на животных и только после этого вакцину разрешают испытывать на волонтерах или добровольцах; после успешного проведения клинической апробации вакцину разрешают применять в широкой медицинской практике.

На куриных эмбрионах получают, например, живую противогриппозную вакцину. Она предназначается для интраназального введения (лицам старше 16 лет и детям от 3 до 15 лет). Вакцина представляет собой высушенную аллантоисную жидкость, взятую от зараженных вирусом куриных эмбрионов. Тип вируса подбирают согласно эпидемиологической ситуации и прогнозам. Поэтому препараты могут выпускаться в виде моновакцины или дивакцины (напрмер, включающая вирусы А2 и В) в ампулах с 20 и 8 прививочными дозами для соответствующих групп населения. Высушенная масса в ампулах обычно имеет светло-желтый цвет, который сохраняется и после растворения содержимого ампулы в прокипяченой остуженной воде.

Живые противогриппозные вакцины для взрослых и детей готовят и для приема через рот. Такие вакцины представляют собой специальные вакцинные штаммы, репродукция которых происходила в течение 5-15 пассажей (не менее и не более) на культуре почечной ткани куриных эмбрионов. Их выпускают в сухом виде во флаконах. При растворении в воде цвет из светло-желтого переходит в красноватый.

Из других вирусных вакцин, получаемых на куриных эмбрионах, можно назвать противопаротитную, против желтой лихорадки.

Из прочих эмбриональных тканей используют эмбрионы мышей или других млекопитающих животных, а также абортированные плоды человека.

Эмбриональные перевиваемые ткани доступны после обработки трипсином, поскольку в таких тканях еще не формируется большого количества межклеточных веществ (в том числе небелковой природы). Клетки разделяются и после необходимых обработок их культивируют в специальных средах в монослое или в суспендированном состоянии.

Ткани, изолируемые от животных после рождения, относятся к разряду зрелых. Чем их возраст больше, тем с большим трудом они культивируются. Однако после успешного выращивания они затем "выравниваются" и мало чем отличаются от эмбриональных клеток.

Кроме полиомиелита специфическую профилактику живыми вакцинами проводят при кори. Противокоревую живую сухую вакцину изготавливают из вакцинного штамма, репродукция которого осуществлялась на клеточных культурах почек морских свинок или фибробластах японских перепелок.

    Биообъекты растительного происхождения. Дикорастущие растения и культуры растительных клеток.

Для растений характерны: способность к фотосинтезу, наличие целлюлозы, биосинтез крахмала.

Водоросли - важный источник различных полисахаридов и других биологичоски активных веществ. Размножаются оии вегетативио, бесполым и половым путями. Как биообъекты используются недостаточно, хотя, например, ламинария под названием морской капусты производится промышленностью разлнчных стран. Хоро-шо известны агар-агар и альгинаты, получаемые из водорослей.

Клетки высших растеиий. Высшие растения (порядка 300 000 видов) - зто дифференцированные многоклеточные, преимущественно наземные организмы. Из всех тканей лишь меристематические способны к делению и за их счет образуются все другие ткани. Это важно для получения клеток, которые затем должны быть включены в биотехнологический процесс.

Клетки меристемы, задерживающиеся на эмбриоиальной стадии развития в течение всей жизни растения, называготся инициальными, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей - конечные клетки.

В зависимости от топологии в растении меристемы подразделяют на верхушечные, или апикальные (отлат. арех - верхушка), боковые, или латеральные (от лат. lateralis - боковой) и промежуточные, или интеркалярные (от лат. Intercalaris - промежугочный, вставной.

Тотипотентность - это свойство соматических клеток растений полностью реализовать свой потенциал развития вплоть до образования целого растения.

Любой вид растения может дать в соответствующих условиях неорганизованную массу делящихся клеток - каллус (отлат. callus - мозоль), особенно при индуцирующем влиянии растительных гормонов. Массовое производство каллусов с дальнейшей регенерацией побегов пригодно для крупномасштабного производства растений. Вообще каллус представляет собой основной тип культивируемой на питательной среде растительной клетки. Каллусная ткань из любого расгения может длительно рекультивироваться. При этом первоначальные растения (в том числе и меристематические), дифференцируются и деспециализируются, но индуцируются к делению, формируя первичный каллус.

Кроме выращивания каллусов удается культивировать клетки некоторых растений в суспензионных культурах. Важными биообъектами представляются также и протопласты растительных клеток. Методы их получения принципиально сходны с методами получения бактериальных и грибных протопласгов. Последующие клеточно-иижснерныс эксперименты с ними заманчивы по возможным ценным результатам.

    Биообъекты - микроорганизмы. Основные группы получаемых биологически активных веществ.

Объектами биотехнологии являются вирусы, бактерии, грибы - микромицсты и макромицеты, протозойные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционалъно сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, само-регулируемого и, следовательно, целенаправленного биохимиче-ского производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов,.

Клетки грибов, водорослей, растений и животных имеют настоящее, отграниченное от цитоплазмы, ядро и поэтому их относят к эукариотам.

    Биообъекты - макромолекулы с ферментативной активностью. Использование в биотехнологических процессах.

В последнее время группа ферментных препаратов получила новое направление применения - это инженерная энзимология, которая является разделом биотехнологии, где биообъектом выступает фермент.

Органотерапия, т.е. лечение органами и препаратами из органов, тканей и выделений животных, долгое время покоилась на глубоком эмпиризме и противоречивых представлениях, занимая видное место в медицине всех времен и народов. Лишь во второй половине XIX столетия в результате успехов, достигнутых биологической и органической химией, и развития экспериментальной физиологии органотерапия становится на научную основу. Это связано с именем французского физиолога Броун-Секара. Особое внимание привлекали работы Броун-Секара связанные с введением в организм человека вытяжек из семенников быка, оказавших положительное влияние на работоспособность и самочувствие.

Первыми официнальными препаратами (ГФ VII) были адреналин, инсулин, питуитрин, пепсин и панкреатин. В дальнейшем в результате обширных исследований, проведенных советскими эндокринологами и фармакологами, оказалось возможным последовательно расширить круг официнальных и неофицинальных органопрепаратов.

Тем не менее, некоторые аминокислоты получают химическим синтезом, например глицин, а также D-, L-метионин, D-изомер которого малотоксичен, поэтому медицинский препарат на основе метионина содержит D- и L-формы, хотя за рубежом в медицине используется препарат, содержащий только L-форму метионина. Там рацемическую смесь метионина разделяют биоконверсией D-формы в L-форму под влиянием специальных ферментов живых клеток микроорганизмов.

Иммобилизованные ферментные препараты обладают рядом существенных преимуществ при использовании их в прикладных целях по сравнению с нативными предшественниками. Во-первых, гетерогенный катализатор легко отделить от реакционной среды, что дает возможность: а) остановить в нужный момент реакцию; б) использовать катализатор повторно; в) получать продукт, не загрязненный ферментом. Последнее особенно важно в ряде пищевых и фармацевтических производств.

Во-вторых, использование гетерогенных катализаторов позволяет проводить ферментативный процесс непрерывно, например в проточных колоннах, и регулировать скорость катализируемой реакции, а также выход продукта путем изменения скорости потока.

В-третьих, иммобилизация или модификация фермента способствует целенаправленному изменению свойств катализатора, в том числе его специфичности (особенно в отношении к макромолекулярным субстратам), зависимости каталитической активности от рН, ионного состава и других параметров среды и, что очень важно, его стабильности по отношению к различного рода денатурирующим воздействиям. Отметим, что крупный вклад в разработку общих принципов стабилизации ферментов был сделан советскими исследователями.

В-четвертых, иммобилизация ферментов дает возможность регулировать их каталитическую активность путем изменения свойств носителя под действием некоторых физических факторов, таких, как свет или звук. На этой основе создаются механо- и звукочувствительные датчики, усилители слабых сигналов и бессеребряные фотографические процессы.

В результате внедрения нового класса биоорганических катализаторов - иммобилизованных ферментов, перед прикладной энзимологией открылись новые, ранее недоступные пути развития. Одно лишь перечисление областей, в которых находят применение иммобилизованные ферменты, могло бы занять немало места.

    Направления совершенствования биообъектов методами селекции и мутагенеза. Мутагены. Классификация. Характеристика. Механизм их действия.

Что мутации - это первоисточник изменчивости организмов, создающий основу для эволюции. Однако во второй половине XIX в. для микроорганизмов был открыт еще один источник изменчивости - перенос чужеродных генов - своего рода «генная инженерия природы».

Долгое время понятие мутации относили только к хромосомам у прокариот и хромосомам (ядру) у эукариот. В настоящее время кроме хромосомных мутаций появилось также понятие мутаций цитоплазматических (плазмидных - у прокариот, митохондриальных и плазмидных - у эукариот).

Мутации могут быть обусловлены как перестройкой репликона (изменением в нем числа и порядка расположения генов), так и изменениями внутри индивидуального гена.

Применительно к любым биообъектам, но особенно часто в случае микроорганизмов, выявляются так называемые спонтанные мутации, обнаруживаемые в популяции клеток без специального воздействия на нее.

По выраженности почти любого признака клетки в микробной популяции составляют вариационный ряд. Большинство клеток имеют среднюю выраженность признака. Отклонения «+» и «–» от среднего значения встречаются в популяции тем реже, чем больше величина отклонения в любую сторону (рис. I). Первоначальный, самый простой подход к совершенствованию биообъекта заключался в отборе отклонений «+» (предполагая, что именно эти отклонения соответствуют интересам производства). В новом клоне (генетически однородное потомство одной клетки; на твердой среде - колония), полученном из клетки с отклонением «+» вновь проводился отбор по тому же принципу. Однако такая процедура при ее неоднократном повторении довольно быстро теряет эффективность, т. е. отклонения «+» становятся в новых клонах все меньше по величине.

Объекты, используемые в биотехнологии (они включают представителей, как прокариот, так и эукариот), чрезвычай­но разнообразны по своей структурной организации и био­логическим характеристикам. К объектам биотехнологии относятся:

Бактерии и цианобактерии;

Водоросли;

Лишайники;

Водные растения;

Клетки растений и животных.

В группу низших растений входят и микроскопически малые организмы (одноклеточные и многоклеточные), и очень крупные по размерам. Но все они объединены таки­ми общими признаками, как отсутствие расчленения тела на вегетативные органы и разнообразие способов размноже­ния.

К низшим относят следующие отделы: Вирусы, Бакте­рии, группа отделов Водоросли (Сине-зеленые, Зеленые, Ди­атомовые, Бурые, Красные и др.), Миксомицеты, Грибы, Лишайники. По способу питания их подразделяют на две группы: автотрофы (водоросли и лишайники), способные к фотосинтезу, и гетеротрофы (вирусы, бактерии - за не­большим исключением, - миксомицеты, грибы), исполь­зующие для питания готовые органические вещества.

Низшие растения прошли длинный исторический путь развития, но многие их представители до сих пор сохрани­ли черты примитивной организации. На определенном эта­пе развития они дали начало высшим растениям, венцом которых являются покрытосеменные.

Структура. Вирусные частицы (вирионы) имеют белко­вую капсулу - капсид, содержащий геном вируса, пред­ставленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров - белковых комп­лексов, состоящих, в свою очередь, из протомеров. Вири­оны часто имеют правильную геометрическую форму (ико­саэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими ее белками и, следовательно, может быть построена из стандартных бел­ков одного или нескольких видов, что позволяет вирусу «экономить» место в геноме. Белки капсида комплементар­ны определенным молекулярным структурам в клетке хо­зяина и вступают с ними во взаимодействие, необходимое для проникновения и существования вируса. Капсид защи­щает вирус только вне живой клетки. Вне клетки-хозяина вирусы ведут себя как вещество (могут быть получены в кристаллической форме); попав в живую клетку, они вновь проявляют активность.


Механизм инфицирования. Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на следующие этапы.

Присоединение к клеточной мембране - так назы­ваемая адсорбция. Обычно, для того чтобы вирус адсорби­ровался на поверхности клетки, она должна иметь в соста­ве своей плазматической мембраны специфический белок (часто гликопротеин) - рецептор, специфичный для данно­го вируса. Наличие рецептора нередко определяет круг хо­зяев данного вируса, а также его тканеспецифичность.

Проникновение в клетку. На этом этапе вирусу необ­ходимо доставить внутрь клетки свою генетическую инфор­мацию. Некоторые вирусы привносят также собственные белки, необходимые для ее реализации. Различные вирусы для проникновения в клетку используют разные стратегии. Вирусы также различаются по локализации их реплика­ции: часть вирусов размножается в цитоплазме клетки, а часть - в ее ядре.

Перепрограммирование клетки. При заражении виру­сом в клетке активируются специальные механизмы проти­вовирусной защиты. Зараженные клетки начинают синте­зировать сигнальные молекулы, например интерфероны, переводящие окружающие здоровые клетки в противови­русное состояние и активирующие системы иммунитета. Повреждения, вызываемые размножением вируса в клетке, могут быть обнаружены системами внутреннего клеточного контроля, и такая клетка должна будет «покончить жизнь самоубийством» в ходе процесса, называемого апоптозом (или программируемой клеточной гибелью). От способности вируса преодолевать системы противовирусной защиты на­прямую зависит его выживание. Неудивительно, что мно­гие вирусы, эволюционируя, приобрели способность подав­лять синтез интерферонов, апоптозную программу и т. д. Кроме подавления противовирусной защиты, вирусы стре­мятся создать в клетке максимально благоприятные усло­вия для развития своего потомства.

Персистенция. Некоторые вирусы могут переходить в латентное состояние (так называемая персистенция), слабо вмешиваясь в процессы, происходящие в клетке, и активи­роваться лишь при определенных условиях. На этом по­строена, например, стратегия размножения некоторых бак­териофагов: до тех пор пока зараженная клетка находится в благоприятной среде, фаг не убивает ее, наследуется до­черними клетками и нередко интегрируется в клеточный геном. Однако при попадании зараженной фагом бактерии в неблагоприятную среду возбудитель захватывает контроль над клеточными процессами так, что клетка начинает производить материалы, из которых строятся новые фаги. Клетка превращается в «фабрику», способную производить многие тысячи фагов. Зрелые частицы, выходя из клетки, разрывают клеточную мембрану, тем самым убивая клетку. С персистенцией вирусов связаны некоторые онкологиче­ские заболевания.


Создание новых вирусных компонентов. Размноже­ние вирусов в самом общем случае предусматривает три процесса:

Транскрипцию вирусного генома, т. е. синтез вирус­ной мРНК;

Трансляцию мРНК, т. е. синтез вирусных белков;

Репликацию вирусного генома.

У многих вирусов существуют системы контроля, обес­печивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накопле­но достаточно, транскрипция вирусного генома подавляет­ся, а репликация, напротив, активируется.

Созревание вирионов и выход из клетки. В конце концов, новосинтезированные геномные РНК или ДНК «одевают­ся» соответствующими белками и выходят из клетки. Сле­дует отметить, что активно размножающийся вирус не всег­да убивает клетку-хозяина. В некоторых случаях дочерние вирусы отпочковываются от плазматической мембраны, не вызывая ее разрыва. Таким образом, клетка может про­должать жить и продуцировать вирус.

Классификация вирусов. Систематику и таксономию вирусов кодифицирует и поддерживает Международный комитет по таксономии вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и так­сономическую базу The Universal Virus Database ICTVdB.

Форма представления генетической информации лежит в основе современной классификации вирусов. В настоящее время их подразделяют на ДНК- и РНК-содержащие вирусы.

Значение вирусов. Вирусы вызывают ряд опасных забо­леваний человека (оспу, гепатит, грипп, корь, полиомие­лит, СПИД, рак и т. д.), растений (мозаичную болезнь таба­ка, томата, огурца, карликовость, увядание земляники), животных (чуму свиней, ящур). Однако препараты соответ­ствующих бактериофагов применяют для лечения бактери­альных заболеваний - дизентерии и холеры.

Получение интерферона - особого клеточного белка, препятствующего размножению вирусов, - широко ис­пользуют в медицине, особенно во время вспышек эпидемий гриппа. Это вещество универсального действия, активное по отношению ко многим вирусам, хотя чувствительность разных вирусов к нему неодинакова. Будучи продуктом са­мой клетки, интерферон полностью лишен токсического воздействия на нее. Сейчас применяют готовый интерфе­рон, его можно синтезировать в клетках, культивируемых вне организма.

3.Бактерии

До конца 1970-х гг. термин «бактерия» служил синони­мом прокариот, но в 1977 г. на основании данных молеку­лярной биологии прокариоты подразделили на царства архебактерий и эубактерий (собственно бактерий).

Строение бактерий. Подавляющее большинство бакте­рий (за исключением актиномицетов и нитчатых цианобак­терий) одноклеточны. По форме клеток они могут быть шаровидными (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже - звездчатыми, тетраэдрическими, куби­ческими, С- или О-образными. Обязательными клеточными структурами бактерий являются:

Нуклеоид;

Рибосомы;

Цитоплазматическая мембрана (ЦПМ).

Прокариоты, в отличие от эукариот, не имеют в цито­плазме обособленного ядра. Вся необходимая для жизнеде­ятельности бактерий генетическая информация содержится и одной двухцепочечной ДНК (бактериальная хромосома), имеющей форму замкнутого кольца. Она в одной точке прикреплена к ЦПМ. ДНК в развернутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, т. е. практически все прокариоты гаплоидны, хотя в отдельных случаях одна клетка может содержать несколько копий своей хромосо­мы. Деление хромосомы сопровождается делением клетки. Область клетки, в которой локализована хромосома, называется нуклеоидом; она не окружена ядерной мембраной. 1$ связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, т. е. процессы транскрип­ции и трансляции могут протекать одновременно. Ядрыш­ка нет.

Помимо хромосомы, в клетках бактерий часто находят­ся плазмиды - замкнутые в кольцо небольшие молекулы ДНК, способные к независимой репликации. Они содержат дополнительные гены, необходимые лишь в специфических условиях. В них кодируются механизмы устойчивости к от­дельным лекарственным препаратам, способности к перено­су генов при конъюгации, синтеза веществ антибиотиче­ской природы, способности использовать некоторые сахара или обеспечивать деградацию ряда веществ. То есть плаз­миды действуют как факторы адаптации. В некоторых слу­чаях гены плазмиды могут интегрировать в хромосому бак­терии.

Рибосомы прокариот отличаются от таковых у эукариот и имеют константу седиментации 70 S (у эукариот - 80 S).

У разных групп прокариот имеются локальные впячива- ния ЦПМ - мезосомы, выполняющие в клетке разнообраз­ные функции и разделяющие ее на функционально различ­ные части. Считается, что мезосомы принимают участие в делении бактерий. Когда на мембранах мезосом располага­ются окислительно-восстановительные ферменты, они явля­ются эквивалентами митохондрий клеток растений и живот­ных. У фотосинтезирующих бактерий во впячивания мембран вмонтирован пигмент - бактериохлорофилл. С его помощью и осуществляется бактериальный фотосинтез.

С внешней стороны от ЦПМ находятся несколько слоев (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки, пили).

У бактерий существует два основных типа строения кле­точной стенки, свойственных грамположительным и грамотрицательным видам. Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщи­ной 20-80 нм, построенный в основном из пептидогликана муреина с большим количеством тейхоевых кислот и не­большим количеством полисахаридов, белков и липидов. У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружен наружной мембраной, имеющей, как правило, неровную, искривленную форму.

С внешней стороны от клеточной стенки может нахо­диться капсула - аморфный слой гидратированных поли­сахаридов, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру.

Многие бактерии способны к активному движению с по­мощью жгутиков - выростов цитоплазмы.

Размножение бактерий. Бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием. Для одной группы одноклеточных цианобактерий описано множественное де­ление (ряд быстрых последовательных бинарных делений, приводящих к образованию от 4 до 1000 новых клеток под оболочкой материнской клетки).

У прокариот может происходить горизонтальный пере­нос генов. При конъюгации клетка-донор в ходе непосред­ственного контакта передает клетке-реципиенту часть свое­го генома (в некоторых случаях - весь геном). Участки ДНК донорной клетки могут обмениваться на гомологич­ные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Бактериальная клетка может поглощать и свободно на­ходящуюся в среде ДНК, включая ее в свой геном. Данный процесс носит название трансформации. В природных усло­виях обмен генетической информацией протекает с по­мощью бактериофагов (трансдукция). При горизонтальном переносе новых генов не образуется, однако осуществляется создание разных генных сочетаний. Эти свойства бактерий очень важны для генетической инженерии.

Спорообразование у бактерий. Некоторые бактерии об­разуют споры. Их формирование характерно для особо ус­тойчивых форм с замедленным метаболизмом и служит для сохранения в неблагоприятных условиях, а также для рас­пространения. Споры могут сохраняться продолжительное время, не теряя жизнеспособности. Так, эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100 °С, высушивание в течение тысячи лет и, по неко­торым данным, сохраняются в жизнеспособном состоянии в почвах и горных породах миллионы лет.

Метаболизм бактерий. За исключением некоторых спе­цифических моментов, биохимические пути, по которым осуществляется синтез белков, жиров, углеводов и нуклео­тидов, у бактерий схожи с таковыми у других организмов. Однако по числу возможных биохимических путей и, соот­ветственно, по степени зависимости от поступления органи­ческих веществ извне бактерии различаются. Часть бакте­рий может синтезировать все необходимые им органиче­ские молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, ко­торые они способны лишь трансформировать (гетеротрофы).

Классификация бактерий. Наибольшую известность получила фенотипическая классификация бактерий, осно­ванная на строении их клеточной стенки. На основе этой классификации построен «Определитель бактерий Берги», девятое издание которого вышло в 1984-1987 гг. Крупней­шими таксономическими группами в ней стали четыре от­дела: Gracilicutes (грамотрицательные), Firmicutes (грамположительные), Tenericutes (микоплазмы) и Mendosicutes (археи).

Значение бактерий. Бактерии-сапрофиты играют боль­шую роль в круговороте веществ в природе, разрушая в экосистемах мертвый органический материал. Хорошо из­вестна их роль во всех биогеохимических циклах на нашей планете. Бактерии принимают участие в круговоротах хи­мических элементов (углерода, железа, серы, азота, фосфо­ра и др.), в процессах почвообразования, определяют пло­дородие почв.

Многие бактерии «населяют» организмы животных и человека, стоят на страже здоровья.

Биотехнологические функции, выполняемые бактериями, разнообразны. Их применяют при производстве различных веществ: уксуса (Gluconobacter suboxidans), молочнокислых напитков и продуктов (Lactobacillus, Leuconostoc), а также микробных инсектицидов (Bacillus thuringiensis) и герби­цидов, белков (Methylomonas), витаминов (Clostridium - рибофлавин); при переработке отходов, получении бактери­альных удобрений, растворителей и органических кислот, биогаза и фотоводорода. Широко используется такое свой­ство некоторых бактерий, как диазотрофность, т. е. способ­ность к фиксации атмосферного азота.

Благодаря быстрому росту и размножению, а также простоте строения, бактерии активно применяют в научных исследованиях по молекулярной биологии, генетике и био­химии, в генно-инженерных работах при создании геном­ных клонотек и введении генов в растительные клетки (агробактерии). Информация о метаболических процессах бактерий позволила производить бактериальный синтез ви­таминов, гормонов, ферментов, антибиотиков и др.

Перспективными направлениями являются очистка с использованием бактерий почв и водоемов, загрязненных нефтепродуктами или ксенобиотиками, а также обогащение руд с помощью сероокисляющих бактерий.

Нельзя забывать о том, что отдельные виды бактерий вызывают опасные заболевания у человека (чуму, холеру, туберкулез, брюшной тиф, сибирскую язву, ботулизм и др.), животных и растений (бактериозы). Некоторые виды бактерий могут разрушать металл, стекло, резину, хлопок, древесину, масла, лаки, краски.

1. Что такое биотехнология? В каких сферах деятельности человека используются биотехнологические процессы?

Биотехнология - область науки и практической деятельности, связанная с производством различных продуктов при помощи живых организмов, культивируемых клеток и биологических процессов. Биотехнологические процессы используются в хлебопечение, виноделие, получение кисломолочных продуктов, обработка кожи и др.

2. Каковы основные направления биотехнологии?

Основные направления биотехнологии: производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений и лекарственных препаратов (ферментов, витаминов, гормонов, антибиотиков, иммуноглобулинов и др.); производство пищевых продуктов и кормов для животных; создание новых полезных штаммов микроорганизмов, сортов растений и пород животных; разработка и использование биологических методов защиты растений от вредителей и болезней; создание и использование биотехнологических методов защиты окружающей среды и т. д.

3. Что представляет собой клеточная инженерия? Какие методы клеточной инженерии вам известны? Какие результаты получены при их применении?

Клеточная инженерия - это культивирование в специальных условиях клеток растений, животных и микроорганизмов, включая различные манипуляции с ними (слияние клеток, удаление или пересадка органоидов и т. д.). К методам клеточной инженерии относятся: размножение растений на основе культуры тканей, соматическая гибридизация. Соматическая гибридизация - это слияние разных типов соматических клеток одного организма или клеток организмов, принадлежащих к разным видам. С помощью этого метода, например, были созданы гибриды, которые невозможно получить путем скрещивания особей - гибриды табака и картофеля, моркови и петрушки, томата и картофеля и т. п.

4. Что такое генетическая инженерия? Назовите основные инструменты генетической инженерии.

Генетическая (генная) инженерия - раздел молекулярной биологии, связанный с выделением генов из клеток живых организмов, осуществлением с ними различных манипуляций (в том числе - созданием гибридных молекул ДНК) и внедрением их в другие организмы. Главными инструментами генетической инженерии являются ферменты и векторы. С помощью набора специальных ферментов можно разрезать в определенных участках молекулы ДНК и РНК, выделять из них нужные фрагменты, копировать и сшивать эти фрагменты друг с другом.

5. Какие организмы называются трансгенными? Какие методы получения трансгенных животных вы можете назвать?

Живые организмы, геном которых был изменен путем генно-инженерных операций и содержит хотя бы один активно функционирующий ген другого организма, называют трансгенными (генетически модифицированными). Одним из основных методов получения трансгенных животных является микроинъекция ДНК в оплодотворенные яйцеклетки. Все начинается с введения фрагмента ДНК, содержащего несколько копий нужного гена, в ядро сперматозоида, оплодотворившего яйцеклетку. После того как произойдет слияние ядер, модифицированные зиготы переносят в матку самки-реципиента. Через некоторое время она производит на свет трансгенных детенышей. В последние годы для создания трансгенных животных используют также эмбриональные стволовые клетки, получаемые из зародышей на ранних этапах развития. Эти клетки могут дифференцироваться в любые другие типы клеток многоклеточного организма.

6. В 1962 г. британский ученый Дж. Гердон провел следующий эксперимент. С помощью ультрафиолетового излучения в оплодотворенной яйцеклетке лягушки было разрушено ядро. Затем в безъядерную зиготу пересадили ядро, взятое из клетки кишечника взрослой лягушки. Такая необычная зигота начала дробиться и со временем развилась в нормальную лягушку. Дж. Гердон и его последователи продолжили исследования в этой области. В 2012 г. Дж. Гердон стал лауреатом Нобелевской премии. Какие выводы можно сделать из описанного эксперимента? Как вы думаете, какое значение и продолжение имели эксперименты Дж. Гердона?

Из вышепредложенного описания ясно, что Дж. Гердон в результате своего эксперимента впервые получил клон животного (лягушки), выращенный из дифференцированных клеток взрослого животного.


1. Общие сведения о биологических объектах

Объектами биотехнологии являются вирусы, бактерии, грибы – микромицеты и макромицеты, протозоиные организмы, клетки (ткани) растений, животных и человека, некоторые биогенные и функционально сходные с ними вещества (например, ферменты, простагландины, лектины, нуклеиновые кислоты и др.). Следовательно, объекты биотехнологии могут быть представлены организованными частицами (вирусы), клетками (тканями) или их метаболитами (первичными, вторичными). Даже при использовании биомолекулы как объекта биотехнологии исходный биосинтез ее осуществляется в большинстве случаев соответствующими клетками. В этой связи можно сказать, что объекты биотехнологии относятся либо к микробам, либо к растительным и животным организмам. В свою очередь организм можно образно характеризовать как систему экономного, сложнейшего, компактного, саморегулируемого и, следовательно, целенаправленного биохимического производства, устойчиво и активно протекающего при оптимальном поддержании всех необходимых параметров. Из такого определения следует, что вирусы не являются организмами, но по содержанию молекул наследственности, приспособляемости, изменчивости и некоторым другим свойствам они относятся к представителям живой природы.

Как видно из приводимой схемы, объекты биотехнологии исключительно разнообразны, диапазон их распространяется от организованных частиц (вирусов) до человека.

Вирусы занимают положение между живой и неживой природой, у них нет ядра, хотя имеется наследственный ядерный материал – рибонуклеиновая кислота (РНК) или дезоксирибонуклеиновая кислота (ДНК).

В отличие от микробов клеточной организации РНК и ДНК в вирусных частицах вместе никогда не обнаруживаются.

В настоящее время большинство объектов биотехнологии составляют микробы, относящиеся к трем надцарствам (безъядерные, предъядерные, ядерные) и пяти царствам (вирусы, бактерии, грибы, растения и животные). Причем первые два надцарства состоят исключительно из микробов, тогда как третье - преимущественно из растений и животных.

В первой половине XIX в. было сделано одно из самых основных обобщений биологии – клеточная теория (М. Шлейден, Т. Шванн, Р. Вирхов), которая стала общепризнанной. Она же оказалась фундаментом науки – цитология (от греч. kitos – полость). Из всех объектов биотехнологии лишь вирусы, вироиды и биомолекулы не имеют клеточной организации. Однако вирусы, находясь в клетках, ведут себя как живые существа – они реплицируются («размножаются») и их генетический материал функционирует, в основном, по общим законам, присущим клеткам любого происхождения. По мере совершенствования методов и техники цитологических исследований ученые глубже проникают в сущность организованных частиц и клеток, а в результате такого проникновения удается обосновать принадлежность всех живых существ к трем надцарствам: Acaryotae – безъядерные, Procaryotae – предъядерные и Eucaryotae – ядерные (от греч. а – нет, pro – до, ей – хорошо, полностью, karyon – ядро). К первому относятся организованные частицы – вирусы и вироиды, ко второму – бактерии, к третьему – все другие организмы (грибы, водоросли, растения, животные).

Несмотря на то, что представители всех надцарств содержат генетический материал, различные акариоты лишены какого-либо одного типа нуклеиновой кислоты РНК или ДНК. Они не способны функционировать (в том числе – реплицироваться) вне живой клетки, и, следовательно, правомочно именовать их безъядерными.

Клетки грибов, водорослей, растений и животных имеют настоящее, отграниченное от цитоплазмы, ядро и поэтому их относят к эукариотам.

В основе классификации прокариот и эукариот лежат многочисленные структурные различия, основные из них следующие: 1) наличие или отсутствие ядра, содержащего хромосомную ДНК; 2) строение и химический состав клеточной стенки и 3) наличие или отсутствие субклеточных цитоплазматиче-ских органелл. В прокариотической клетке, например бактериальной, хромосомная ДНК находится непосредственно в цитоплазме, клетка окружена ригидной клеточной стенкой, в состав которой часто входит пептидогликан, но не хитин или целлюлоза; в клетке нет субклеточных цитоплазматических органелл. В эукариотической клетке имеется ядро, отделенное от цитоплазмы ядерной мембраной, хромосомная ДНК находится в ядре; клеточная стенка, если она есть, может содержать хитин или целлюлозу, но не пептидогликан; в цитоплазме содержатся различные субклеточные органеллы (митохондрии, аппарат Гольджи, хлоропласт в клетках растений) (рис. 1).

Рис. 1. Схема прокариотической бактериальной клетки (А) и эукариотической животной клетки (Б)

2. Вирусы и вироиды

Нуклеиновые кислоты – вещества наследственности вирусов. По типу нуклеиновой кислоты их подразделяют на РНК-содержащие вирусы и ДНК-содержащие вирусы. К первым относят все вирусы растений, ко вторым – большинство бактериофагов, ряд вирусов человека и животных (аденовирусы, вирусы герпеса, осповакцины и др.).

Белок структурируется вокруг вирусной нуклеиновой кислоты (генома) в виде оболочки и называется капсидом. Форма вириона определяется его капсидом. Вместе с нуклеиновой кислотой капсид образует нуклеокапсид.

Примерный перечень вирусов включает 17 семейств вирусов позвоночных и 7 семейств вирусов беспозвоночных животных, 10 семейств вирусов бактерий. Описаны 20 родов вирусов растений и 5 родов вирусов грибов. Классификационные схемы вирусов до конца еще не устоявшиеся, к тому же открывают новые для науки вирусы (пример с вирусами эбола, иммунодефицита человека). Представителями ДНК-содержащих вирусов являются вирусы контагиозного моллюска, оспы, герпеса, большинство фагов бактерий; РНК-содержащими являются вирусы растений, вирусы гриппа человека, бешенства, полиомиелита и др.

Вироиды. По молекулярной структуре вироиды представляют собой одноцепочечные, ковалентно замкнутые, кольцевые молекулы РНК, лишенные капсидов. Число нуклеотидов в таких РНК находится в пределах 240-400. По форме вироиды могут быть линейные и кольцевидные, они способны принимать шпилечную, квазидвухцепочечную конформацию (от лат. quasi – якобы, как-будто, почти, близко; conformatio – форма, расположение). Каждый тип вироида содержит уникальный, только ему присущий, особый вид низкомолекулярной РНК. Размеры вироидов находятся в пределах 15 нм. В чувствительных клетках растений-хозяев они сосредоточиваются в ядре, ассоциируясь с ядрышком в виде белково-нуклеинового комплекса, и реплицируются автономно целиком при помощи предшествующих или активированных ферментов хозяина. Вироиды не транслируются. Это подтверждается структурным сходством их между собой и отсутствием у ряда вироидов кодонов-инициаторов. В то же время репликация происходит благодаря транскрипции последовательностей вироидных РНК с РНК-матриц при участии РНК-полимераз.

3. Бактерии

Бактерии – существа клеточной организации, у которых ядерный материал не отделен от цитоплазмы элементарными мембранами и не связан с какими-либо основными белками. Цитоплазма в них с нерегулярно разбросанными рибосомами неподвижна, клетки не обладают способностями к эндо- и экзоцитозу. В большинстве своем бактерии одноклеточны, наименьший диаметр их 0,2-10,0 мкм.

Все бактерии составляют единое царство Bacteria, хотя одни из них – археобактерии (Archaeobacteria) заметно отличаются от других, названных эубактериями (Eubacteria). Очевидно, археобактерии являются более древними представителями прокариот, чем эубактерии. Они обитают в средах с экстремальными условиями – высокие концентрации неорганических солей, повышенные температуры, оксид и диоксид углерода – как единственные источники углерода. К археобактериям относятся галобактерии, термоацидофильные бактерии и метанобразующие, или метаногенные бактерии.

Фототрофными бактериями являются оксигенные цианобактерии, аноксигенные пурпурные и зеленые бактерии; хемотрофными – грамположительные и грамотрицательные бактерии и бациллы, миксобактерии, стебельковые и почкующиеся бактерии, вибрионы, спириллы, спирохеты, актиномицеты, коринебактерии, микобактерии, риккетсии, хламидии, микоплазмы и спироплазмы.

Бактерия Escherichia coli – один из наиболее хорошо изученных организмов. За последние годы удалось получить исчерпывающую информацию о ее генетике, молекулярной биологии, биохимии, физиологии и общей биологии. Это грамотрицательная непатогенная подвижная палочка длиной менее 1 мкм. Ее средой обитания является кишечник человека, но она также может высеваться из почвы и воды. Благодаря способности размножаться простым делением на средах, содержащих только ионы Na + , K + , Mg 2+ , Ca 2+ , NH 4 + , Cl~, НР0 4 2 ~ и S0 4 2 ~, микроэлементы и источник углерода (например, глюкозу), Е. coli стала излюбленным объектом научных исследований. При культивировании E . coli на обогащенных жидких питательных средах, содержащих аминокислоты, витамины, соли, микроэлементы и источник углерода, время генерации (т. е. время между образованием бактерии и ее делением) в логарифмической фазе роста при температуре 37°С составляет примерно 22 мин.

Для каждого живого организма существует определенный температурный интервал, оптимальный для его роста и размножения. При слишком высоких температурах происходит денатурация белков и разрушение других важных клеточных компонентов, что ведет к гибели клетки. При низких температурах биологические процессы существенно замедляются или останавливаются совсем вследствие структурных изменений, которые претерпевают белковые молекулы. Исходя из температурного режима, который предпочитают те или иные микроорганизмы, их можно подразделить на термофилы (от 45 до 90°С и выше), мезофилы (от 10 до 47°С) и психрофилы, или психротрофы (от -5 до 35°С). Микроорганизмы, активно размножающиеся лишь в определенном диапазоне температур, могут быть полезным инструментом для решения различных биотехнологических задач. Например, термофилы часто служат источником генов, кодирующих термостабилъные ферменты, которые применяются в промышленных или в лабораторных процессах, а генетически видоизмененные психротрофы используют для биодеградации токсичных отходов, содержащихся в почве и воде, при пониженных температурах.

E . coli можно культивировать как в аэробных (в присутствии кислорода), так и в анаэробных (без кислорода) условиях. Однако для оптимальной продукции рекомбинантных белков Е. coli и другие микроорганизмы обычно выращивают в аэробных условиях. Если целью культивирования бактерий в лаборатории является синтез и выделение определенного белка, то культуры выращивают на сложных жидких питательных средах в колбах. Для поддержания нужной температуры и обеспечения достаточной аэрации культуральной среды колбы помещают в водяную баню или термостатируемую комнату и непрерывно встряхивают. Такой аэрации достаточно для размножения клеток, но не всегда - для синтеза белка. Рост клеточной массы и продукция белка лимитируются не содержанием в питательной среде источников углерода или азота, а содержанием растворенного кислорода: при 20°С оно равно примерно девяти миллионным долям. Это становится особенно важно при промышленном получении рекомбинантных белков с помощью микроорганизмов. Для обеспечения условий, оптимальных для максимальной продукции белков, конструируют специальные ферментеры и создают системы аэрации.

Помимо Е. coli , в молекулярной биотехнологии используют множество других микроорганизмов. Их можно разделить на две группы: микроорганизмы как источники специфических генов и микроорганизмы, созданные генно-инженерными методами для решения определенных задач. К специфическим генам относится, например, ген, кодирующий термостабильную ДНК-полимеразу, которая используется в широко применяемой полимеразой цепной реакции (ПЦР). Этот ген был выделен из термофильных бактерий и клонирован в Е. coli . Ко второй группе микроорганизмов относятся, например, различные штаммы Corynebacterium glutamicum , которые были генетически модифицированы с целью повышения продукции промышленно важных аминокислот.

4. Грибы

Биотехнологические функции грибов разнообразны. Их используют для получения таких продуктов, как:

· антибиотики (пенициллы, стрептомицеты, цефалоспорины);

· гиббереллины и цитокинины (физариум и ботритис);

· каротиноиды (например, астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);

· белок (Candida, Saccharomyces lipolitica);

· сыры типа рокфор и камамбер (пенициллы);

· соевый соус (Aspergillus oryzae).

К грибам относятся актиномицеты, дрожжи и плесени. Истинные актиномицеты – строгие аэробы, они грамположительны и не образуют спор. Наиболее представительный в этой группе – род Streptomyces, отдельные виды которого продуцируют широко применяемые антибиотики. При росте на твердых средах актиномицеты образуют очень тонкий мицелий с воздушными гифами, которые дифференцируются в цепочки конидиоспор. Каждая конидиоспора способна образовать микроколонию.

Антибиотики продуцирует и другой вид актиномицетов, Micromonospora, колонии которого лишены воздушных гиф и образуют конидиоспоры непосредственно на мицелии.

Из 500 известных видов дрожжей первым люди научились использовать Saccharomyces cerevisiae, этот вид наиболее интенсивно культивируется. Дрожжи Saccharomyces cerevisiae – это непатогенные одноклеточные микроорганизмы с диаметром клетки примерно 5 мкм, которые во многих отношениях представляют собой эукариотический аналог Е. coli . Их генетика, молекулярная биология и метаболизм детально изучены. S . cere visiae размножаются почкованием и хорошо растут на такой же простой среде, как и Е. coli . Их способность к превращению сахара в этанол и углекислый газ издавна использовалась для изготовления алкогольных напитков и хлеба. Дрожжи S . cerevisiae представляют также большой научный интерес. В частности, они являются наиболее удобной моделью для исследования других эукариот, в том числе человека, поскольку многие гены, ответственные за регуляцию клеточного деления S . cerevisiae , сходны с таковыми у человека. Это открытие способствовало идентификации и характеристике генов человека, отвечающих за развитие новообразований. Широко используемая генетическая система дрожжей (искусственная хромосома) является непременным участником всех исследований по изучению ДНК человека. В 1996 г. была определена полная нуклеотидная последовательность всего набора хромосом S . cerevisiae , что еще более повысило ценность этого микроорганизма для научных исследований.

Синтезированный бактериальной клеткой эукариотический белок часто приходится подвергать ферментативной модификации, присоединяя к белковой молекуле низкомолекулярные соединения – во многих случаях это необходимо для правильного функционирования белка. К сожалению, Е. coli и другие прокариоты не способны осуществлять эти модификации, поэтому для получения полноценных эукариотических белков используют S . cerevisiae , а также другие виды дрожжей: Kluyveromyces lactis , Saccharomyces diastaticus , Schizisaccharomyces pombe , Yarrowia lipolytica , Pichia pastoris , Hansenula polymoгрha . Наиболее эффективными продуцентами полноценных рекомбинантных белков являются P . pastoris и Н. polymoгрha .

К дрожжам, сбраживающим лактозу, относится Kluyveromyces fragilis , который используют для получения спирта из сыворотки. Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы. Все три вида принадлежат к классу аскомицетов. Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков. Phaffia rhodozyma синтезирует астаксантин – каротиноид, который придает мякоти форели и лосося, выращиваемых на фермах, характерный оранжевый или розоватый цвет. Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).

Плесени вызывают многочисленные превращения в твердых средах, которые происходят перед брожением. Их наличием объясняется гидролиз рисового крахмала при производстве сакэ и гидролиз соевых бобов, риса и солода при получении пищи, употребляемой в азиатских странах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5-7 раз больше таких витаминов, как рибофлавин, никотиновая кислота) и отличаются повышенным в несколько раз содержанием белка. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.

Искусственное выращивание грибов способно внести и иной, не менее важный вклад в дело обеспечения продовольствием возрастающего населения земного шара. Люди употребляют грибы в пищу с глубокой древности. Поэтому сделать грибы такой же управляемой сельскохозяйственной культурой, как зерновые злаки, овощи, фрукты, давно уже стало актуальной задачей. Наиболее легко поддаются искусственному выращиванию древоразрушающие грибы. Это связано с особенностями их биологии, которые стали нам известны и понятны только сейчас. Их способность легко расти и плодоносить использовали с древнейших времен.

Искусственное разведение древоразрушающих грибов получило довольно широкое распространение. Мицелий съедобных грибов можно выращивают на жидких средах, например на молочной сыворотке и др., в специальных ферментерах, в так называемой глубинной культуре.

5. Простейшие

Простейшие относятся к числу нетрадиционных объектов биотехнологии. До недавнего времени они использовались лишь как компонент активного ила при биологической очистке сточных вод. В настоящее время они привлекли внимание исследователей как продуценты биологически активных веществ.

В этом качестве рациональнее использовать свободноживущих простейших, обладающих разнообразными биосинтетическими возможностями и потому широко распространенными в природе.

Особую экологическую нишу занимают простейшие, обитающие в рубце жвачных животных. Они обладают ферментом целлюлазой, способствующей разложению клетчатки в желудке жвачных. Простейшие рубца могут быть источником этого ценного фермента. Возбудитель южноамериканского трипаносомоза – Trypanosoma (Schizotrypanum cruzi) стала первым продуцентом противоопухолевого препарата круцина (СССР) и его аналога – трипанозы (Франция). Изучая механизм действия этих препаратов, ученые пришли к выводу, что эти препараты оказывают цитотоксический эффект при прямом контакте с опухолью и ингибируют ее опосредованно, путем стимуляции ретикулоэндотелиальной системы. Выяснилось, что ингирующее действие связано с жирнокислотными фракциями. Характерной особенностью этих организмов является высокое содержание ненасыщенных жирных кислот, составляющее у трипаносомид 70-80 %, а у Astasia longa (свободноживущий жгутиконосец) – 60% от суммы всех жирных кислот. У жгутиконосцев фосфолипиды и полиненасыщенные жирные кислоты имеют такой же состав и строение, как в организме человека и животных. В мире микробов полиненасыщенные жирные кислоты не синтезируются, а многоклеточные животные или растения представляют собой более ограниченную сырьевую базу, чем простейшие, культуры которых можно получать методами биотехнологии независимо от времени года или климатических условий.

Поскольку липидный метаболизм простейших обладает относительной лабильностью, были изучены пути его регуляции. Применение к простейшим общепринятого в микробиологии приема повышения биосинтеза липидов за счет снижения содержания в среде источника азота и увеличения содержания источника углерода привело к резкому торможению или остановке роста культур. Для создания условий направленного биосинтеза липидов в среды для культивирования жгутиконосцев добавляли предшественники и стимуляторы биосинтеза липидов: малонат, цитрат, сукцинат, цитидиннуклеотиды в сочетании с определенным режимом аэрации.

Другой группой биологически активных веществ простейших являются полисахариды. Разнообразие полисахаридов, синтезируемых простейшими, достаточно велико. Особый интерес представляет парамилон, характерный для эвгленоидных жгутиконосцев. Представители родов Astasia и Euglena способны к сверхсинтезу парамилона, составляющему свыше 50 % сухого остатка клеток. Этот полисахарид изучается как стимулятор иммунной системы млекопитающих. Парамилон, выделенный из А. longa, практически нетоксичен. Выраженное иммуномодулирующее действие и низкая токсичность этого препарата являются предпосылкой для его углубленного исследования в сочетании с препаратами прямого противоопухолевого действия, радиотерапией и другими адъювантами.

В настоящее время в мире придается большое значение производству глюканов не только для медицинских целей, но и для пищевой и текстильной промышленности. До сих пор глюканы получали из культур бактерий или морских водорослей. Эвглениды являются одним из наиболее перспективных источников этого вещества. Структурные полисахариды, входящие в состав клеточных мембран простейших, – это гетерополисахариды, содержащие глюкозу, маннозу, ксилозу, арабинозу, рибозу, галактозу, рамнозу, фруктозу, глюкозамин. Наиболее характерными гетерополисахаридами являются арабиногалактаны, Д-галакто-Д-маннан, фосфаноглюканы и другие.

Биомасса простейших содержит до 50% белка. Его высокая биологическая ценность заключается в том, что он содержит все незаменимые аминокислоты, причем содержание свободных аминокислот на порядок выше, чем в биомассе микроводорослей, бактерий и в мясе. Это свидетельствует о широких возможностях применения свободноживущих простейших в качестве источника кормового белка.

6. Водоросли

Водоросли используются, в основном, для получения белка. Весьма перспективны в этом отношении и культуры одноклеточных водорослей, в частности высокопродуктивных штаммов рода Chlorella и Scenedesmus . Их биомасса после соответствующей обработки используется в качестве добавки в рационы скота, а также в пищевых целях.

Одноклеточные водоросли выращивают в условиях мягкого теплого климата (Средняя Азия, Крым) в открытых бассейнах со специальной питательной средой. К примеру, за теплый период года (6-8 месяцев) можно получить 50-60 т биомассы хлореллы с 1 га, тогда как одна из самых высокопродуктивных трав – люцерна дает с той же площади только 15-20 т урожая.

Хлорелла содержит около 50% белка, а люцерна – лишь 18 %. В целом в пересчете на 1 га хлорелла образует 20-30 т чистого белка, а люцерна – 2-3,5 т. Кроме того, хлорелла содержит 40% углеводов, 7-10% жиров, витамины А (в 20 раз больше), B2, К, РР и многие микроэлементы. Варьируя состав питательной среды, можно процессы биосинтеза в клетках хлореллы сдвинуть в сторону накопления либо белков, либо углеводов, а также активировать образование тех или иных витаминов.

В пищу употребляют не менее 100 видов макрофитных водорослей как в странах Европы и Америки, так и особенно на Востоке. Из них готовят много разнообразных блюд, в том числе диетических, салатов, приправ. Их подают в виде засахаренных кусочков, своеобразных конфет, из них варят варенье, делают желе, добавки к тесту и многое другое. В магазине можно купить консервы из морской капусты – ламинарии дальневосточных или северных морей. Ее консервируют с мясом, рыбой, овощами, рисом, употребляют при приготовлении супов и др. Она наряду с микроводорослью хлореллой является самой популярной съедобной и кормовой водорослью.

Известны и другие съедобные макрофитные водоросли – ульва, из которой делают разные зеленые салаты, а также алария, порфира, родимения, хондрус, ундария и др. В Японии продукты, получаемые из ламинариевых, называют «комбу», и для того, чтобы их вкусно приготовить, существует более десятка способов.

В целом ряде стран водоросли используют как весьма полезную витаминную добавку к кормам для сельскохозяйственных животных. Их прибавляют к сену или дают как самостоятельный корм для коров, лошадей, овец, коз, домашней птицы во Франции, Шотландии, Швеции, Норвегии, Исландии, Японии, Америке, Дании и на нашем Севере. Животным скармливают в виде добавки также биомассу выращиваемых микроводорослей (хлорелла, сценедесмус, дуналиелла и др.).

Гидролизаты белка зеленой водоросли Scenedesmus используются в медицине и косметической промышленности. В Израиле на опытных установках проводятся эксперименты с зеленой одноклеточной водорослью Dunaliella bardaw il, которая синтезирует глицерол. Эта водоросль относится к классу равножгутиковых и похожа на хламидомонаду. Dunadiella может расти и размножаться в среде с широким диапазоном содержания соли: и в воде океанов, и в почти насыщенных солевых растворах Мертвого моря. Она накапливает свободный глицерол, чтобы противодействовать неблагоприятному влиянию высоких концентраций солей в среде, где она растет. При оптимальных условиях и высоком содержании соли на долю глицерола приходится до 85% сухой массы клеток. Для роста этим водорослям необходимы: морская вода, углекислый газ и солнечный свет. После переработки эти водоросли можно использовать в качестве корма для животных, так как у них нет неперевариваемой клеточной оболочки, присущей другим водорослям. Они также содержат значительное количество β-каротина. Таким образом, культивируя эту водоросль, можно получать глицерол, пигмент и белок, что весьма перспективно с экономической точки зрения.

Наряду с кормами водоросли давно применяют в сельском хозяйстве в качестве удобрений. Биомасса обогащает почву фосфором, калием, йодом и значительным количеством микроэлементов, пополняет также ее бактериальную, в том числе азотфиксирующую, микрофлору. При этом в почве водоросли разлагаются быстрее, чем навозные удобрения, и не засоряют ее семенами сорняков, личинками вредных насекомых, спорами фитопатогенных грибов.

Одним из самых ценных продуктов, получаемых из красных водорослей, является агар – полисахарид, присутствующий в их оболочках и состоящий из агарозы и агаропектина. Количество его доходит до 30-40 % от веса водорослей (водоросли лауренция и грацилярия, гелидиум). Водоросли – единственный источник получения агара, агароидов, каррагинина, альгинатов.

Бурые водоросли являются единственным источником получения одних из самых ценных веществ водорослей – солей альгиновой кислоты, альгинатов. Альгиновая кислота – линейный гетерополисахарид, построенный из связанных остатков (3-Д-маннуроновой и α-L-гиалуроновой кислот.

Альгинаты применяются в народном хозяйстве. Это изготовление высококачественных смазок для трущихся деталей машин, медицинские и парфюмерные мази и кремы, синтетические волокна и пластики, стойкие к любой погоде лакокрасочные покрытия, не выцветающие со временем ткани, производство шелка, клеящих веществ исключительно сильного действия, строительных материалов, пищевые продукты отличного качества – фруктовые соки, консервы, мороженое, стабилизаторы растворов, брикетирование топлива, литейное производство и многое другое. Альгинат натрия способен поглощать до 300 весовых единиц воды, образуя при этом вязкие растворы.

Бурые водоросли богаты также весьма полезным соединением – шестиатомным спиртом маннитом, который применяют в пищевой промышленности, фармацевтике, при производстве бумаги, красок, взрывчатки и др. Бурые водоросли в ближайшее время планируется использовать для получения биогаза. Каллусные культуры макрофитных водорослей могут быть использованы далее в различных направлениях. В случае, если они получены от агарофитов, можно непосредственно получать из них агар. Каллусные культуры пищевых макрофитных водорослей, например ламинариевых, могут в перспективе использоваться для получения белка, непосредственно идущего в пищу и в пищевые добавки, а также в корма сельскохозяйственным животным.

7. Растения

Высшие растения (порядка 300 000 видов) – это дифференцированные многоклеточные, преимущественно наземные организмы. В процессе дифференциации и специализации клетки растений группировались в ткани (простые – из однотипных клеток, и сложные – из разных типов клеток). Ткани, в зависимости от функции, подразделяют на образовательные, или меристемные (от греч. meristos – делимый), покровные, проводящие, механические, основные, секреторные (выделительные). Из всех тканей лишь меристематические способны к делению и за их счет образуются все другие ткани. Это важно для получения клеток, которые затем должны быть включены в биотехнологический процесс.

Клетки меристемы, задерживающиеся на эмбриональной стадии развития в течение всей жизни растения, называются инициальными, другие постепенно дифференцируются и превращаются в клетки различных постоянных тканей – конечные клетки. Любой вид растения может дать в соответствующих условиях неорганизованную массу делящихся клеток – каллус (от лат. callus – мозоль), особенно при индуцирующем влиянии растительных гормонов. Массовое производство каллусов с дальнейшей регенерацией побегов пригодно для крупномасштабного производства растений. Вообще каллус представляет собой основной тип культивируемой на питательной среде растительной клетки. Каллусная ткань из любого растения может длительно рекультивироваться. При этом первоначальные растения (в том числе и меристематические), дедифференцируются и деспециализируются, но индуцируются к делению, формируя первичный каллус.

Кроме выращивания каллусов удается культивировать клетки некоторых растений в суспензионных культурах.

Важными биообъектами представляются также и протопласты растительных клеток. Методы их получения принципиально сходны с методами получения бактериальных и грибных протопластов.

Кроме культуры растительных клеток, применяется водный папоротник азолла. Он ценится как органическое азотное удобрение, так как растет в тесном симбиозе с сине-зеленой водорослью анабена. Это позволяет симбиотическому организму анабена-азолла накапливать много азота в вегетативной массе. Анабену-азоллу выращивают на рисовых полях перед посевом риса, что позволяет снижать количество вносимых минеральных удобрений.

Представители семейства рясковых (Lemnaceae) – самые мелкие и простые по строению цветковые растения, величина которых редко превышает 1 см. Рясковые - свободноживущие водные плавающие растения. Вегетативное тело напоминает лист или слоевище низших растений, поэтому до начала 18 века ряску относили к слоевищным растениям.

Рясковые ( Lemna minor, L. trisulca, Wolfia, Spirodela polyrhiza ) служат кормом для животных, для уток и других водоплавающих птиц, рыб, ондатры. Их используют и в свежем, и в сухом виде как ценный белковый корм для свиней и домашней птицы. Рясковые содержат много протеина (до 45 % от сухой массы). 45% углеводов, 5% жиров и остальное - клетчатка и т.д. Они высоко продуктивны, неприхотливы в культуре, хорошо очищают воду и обогащают её кислородом. Это делает рясковые ценным объектом для морфогенетических, физиологических и биохимических исследований.

8. Животные

В качестве объектов биотехнологии могут использоваться сами животные и культуры клеток животных.

При всех различиях между типами эукариот методические подходы к культивированию клеток насекомых, растений и млекопитающих имеют много общего. Сначала берут небольшой кусочек ткани данного организма и обрабатывают его протеолитическими ферментами, расщепляющими белки межклеточного материала (при работе с растительными клетками добавляют специальные ферменты, разрушающие клеточную стенку). Высвободившиеся клетки помещают в сложную питательную среду, содержащую аминокислоты, антибиотики, витамины, соли, глюкозу и факторы роста. В этих условиях клетки делятся до тех пор, пока на стенках емкости с культурой не образуется клеточный монослой. Если после этого не перенести клетки в емкости со свежей питательной средой, то рост прекратится. Обычно удается переносить (перевивать, субкультивировать) и поддерживать до 50-100 клеточных генераций исходной (первичной) клеточной культуры, затем клетки начинают терять способность к делению и гибнут. Культивируемые клетки сохраняют некоторые свойства исходного клеточного материала, поэтому их можно использовать для изучения биохимических свойств различных тканей.

Часто некоторые клетки перевиваемых первичных клеточных культур претерпевают генетические изменения, в результате которых ускоряется их рост. Культуры клеток, которые при этом приобретают селективные преимущества, оказываются способными к неограниченному росту in vitro и называются устойчивыми клеточными линиями. Одни клеточные линии сохраняют основные биохимические свойства исходных клеток, другие нет. У большинства клеток, способных к неограниченному росту, имеются значительные хромосомные изменения, в частности отмечается увеличение числа одних хромосом и потеря других. В молекулярной биотехнологии устойчивые клеточные линии животных используют для размножения вирусов и для выявления белков, которые кодируются клонированными последовательностями ДНК. Кроме того, они применяются для крупномасштабного производства вакцин и рекомбинантных белков.

9. Требования, предъявляемые к биологическим объектам

Для реализации биотехнологических процессов важными параметрами биообъектов являются: чистота, скорость размножения клеток и репродукции вирусных частиц, активность и стабильность биомолекул или биосистем.

Следует иметь в виду, что при создании благоприятных условий для избранного биообъекта биотехнологии эти же условия могут оказаться благоприятными, например, и для микробов – контаминантов, или загрязнителей. Представителями контаминирующей микрофлоры являются вирусы, бактерии и грибы, находящиеся в культурах растительных или животных клеток. В этих случаях микробы-контаминанты выступают вредителями производств в биотехнологии. При использовании ферментов в качестве биокатализаторов возникает необходимость предохранения их в изолированном или иммобилизованном состоянии от деструкции банальной сапрофитной (не болезнетворной) микрофлорой, которая может проникнуть в сферу биотехнологического процесса извне вследствие нестерильности системы.

Активность и стабильность в активном состоянии биообъектов – одни из важнейших показателей их пригодности для длительного использования в биотехнологии.

Таким образом, независимо от систематического положения биообъекта, на практике используют либо природные организованные частицы (фаги, вирусы) и клетки с естественной генетической информацией, либо клетки с искусственно заданной генетической информацией, то есть в любом случае используют клетки, будь то микроорганизм, растение, животное или человек. Для примера можно назвать процесс получения вируса полиомиелита на культуре клеток почек обезьян в целях создания вакцины против этого опасного заболевания. Хотя мы заинтересованы здесь в накоплении вируса, репродукция его протекает в клетках животного организма. Другой пример с ферментами, которые будут использованы в иммобилизованном состоянии. Источником ферментов также являются изолированные клетки или специализированные ассоциации их в виде тканей, из которых изолируют нужные биокатализаторы.