Импульсный стабилизатор напряжения на операционном усилителе. Простейший компенсационный стабилизатор напряжения

В. Крылов

ПОСТРОЕНИЕ ДВУПОЛЯРНЫХ СТАБИЛИЗАТОРОВ НАПРЯЖЕНИЯ НА ОУ

Операционные усилители (ОУ) находят все более применение в самых различных узлах радио-любительской аппаратуры, в том числе и в стабилизи-рованных блоках питания. ОУ позволяют резко повы-сить качественные показатели стабилизаторов и их эк-сплуатационную надежность. использовании ОУ в стабилизаторах можно прочитать в журнале «Радио» (1975, № 12, с. 51, 52 и 1980, № 3, с. 33 - 35), В поме-щенной ниже статье описано построение двуполярных стабилизаторов на ОУ.

Проще всего двуполярный, стабилизатор напряжения может быть получен из двух одинаковых однополярных, как показано на рис. 1.

Рис. 1. Схема стабилизатора, построенного из двух одинаковых однополярных

Этот двуполярный стабилизатор может обеспечить по каждому из плеч током до 0,5 А. Коэффициент стабилиза-ции при изменении входного напряжения на ±10% равен 4000. При изменении сопротивления нагрузки от нуля максимума выходное напряжение стабилизатора изменяется не более чем на 0,001%, т. е. его выходное сопротивление не превышает 0,3 МОм. Пульсации вы-ходного напряжения частотой 100 Гц при максимальном токе на-грузки - не более 1 мВ (двойное амплитудное ).

Достоинство такого способа построения двуполярно-го стабилизатора очевидно - возможность применения однотипных элементов для обоих плеч. Недостаток заключается в том, что источники входного переменного напряжения в этом случае не должны иметь общей точ-ки, иными словами необходимы две изолированные одна от другой вторичные обмотки на сетевом трансформа-торе, два отдельных выпрямителя и четырехпроводное стабилизатора с выпрямителями.

Для того чтобы сократить соединительных про-водов до трех, необходимо регулирующий элемент (тран-зисторы V 4, V 5) нижнего по Схеме плеча стабилизатора перенести из его плюсового в минусовой провод (верх-ний остается без изменения). Сделать это можно, применив транзисторы другой структуры: n - р - n для транзистора V 4 и р - n - р для V 5 (рис. 2, а). Выходное напряжение операционного усилителя А2 при этом будет иметь отрицательную относительно общего провода. По параметрам этот . практически не отличается от описанного выше.

Заметим, что при указанном перенесении регулирую-щего элемента можно ограничиться заменой только -ного из транзисторов, а именно V 5, если включить ре-гулирующий по схеме составного транзистора (рис. 2, б) - при этом мощные регулирующие транзи-сторы в обоих плечах стабилизатора (VI и V 4 по рис. 2, а) остаются одинаковыми. Коэффициент стабилизации при таком видоизменении регулирующего элемента практически остается прежним (около 4000), но выход-ное сопротивление нижнего плеча может увеличиться, так как при переходе к составному регулирующему транзистору теряется преимущество, свойственное соче-танию в регулирующем элементе двух транзисторов Разной структуры (подробнее об этом см. в «Радио», 1975, № 12, с. 51). При экспериментальной проверке рассматриваемых стабилизаторов было зафиксировано, на-пример, увеличение выходного сопротивления в три раза.

Мощные регулирующие транзисторы одного, типа в обоих плечах двуполярного стабилизатора могут быть применены и в том случае, если по схеме составного транзистора включить регулирующий элемент верхнего схеме плеча стабилизатора (рис. 2, в), оставив в другом стабилизаторе транзисторы разной структуры.

Рис. 2. Схема стабилизатора с питанием от одного выпрямителя

Рис. 3. Схема стабилизатора с питанием ОУ от выходного напря-жения

В рассмотренных стабилизаторах ОУ питаются не-посредственно входным однополярным напряжением, но это возможно толвко в тех случаях, когда входное на-пряжение примерно равно номинальному напряжению питания ОУ. Если первое из названых напряжений пре-вышает второе, то питать ОУ можно, например, от про-стейших параметрических стабилизаторов, ограничиваю-щих входное напряжение на необходимом уровне.1 В том. случае, когда напряжение питания каждого из плеч ста-билизатора оказывается значительно меньше необходи-мого для питания ОУ,. следует перейти к его питанию двуполярным напряжением. В двуполярных стабилиза-торах это реализуется сравнительно просто.

На рис. 3 показана схема стабилизатора, выходное двуполярное напряжение которого равно напряжению питания , что позволило питать их непосредственно с выхода стабилизатора. Транзисторы V 3 и V 8 обеспечи-вают усиление выходного напряжения ОУ до необходи-мого уровня, V 4 защищает эмиттерный транзистора V 3 от обратного напряжения, которое мо-жет появляться на выходе ОУ (при его двуполярном питании), например, при переходных процессах. В том случае, когда наибольшее допустимое обратное напря-жение между эмиттером и базой транзистора превышает напряжение питания ОУ, применение такого диода яв-ляется излишним. Именно поэтому в базовой тран-зистора V 8 диод отсутствует.

Место источников образцового напряже-ния (стабилитронов V 5 и V 9) по сравнению с рассмо-тренным ранее стабилизатором (см. рис. 2, а) здесь из-менено для , чтобы сохранить отрицательный харак-тер обратной связи при наличии дополнительных усили-телей на транзисторах V 3 и V 8. была бы отрицательной и в том случае, если каждый из стабили-тронов V 5 и V 9 включить между инвертирующим входом соответствующего ОУ и общим проводом стабилизатора, но в рассматриваемом случае такое включение недопу-стимо, так как при этом будет превышено предельное синфазное напряжение, которое для ОУ К1УТ401Б (но-вое наименование К.140УД1Б) равно ±6 В.

При питании ОУ выходным напряжением следует обращать особое на надежность запуска ста-билизатора. В рассматриваемом случае такой запуск обеспечивается , что сразу после подачи входного напряжения через нагрузочные резисторы R 2 и R 9 про-текают базовые транзисторов V 2 и V 7 соответствен-но. Регулирующие элементы плеч стабилизатора при этом открываются, выходные напряжения увеличивают- , вводя устройство в рабочий режим.

Экспериментальная проверка этого стабилизатора дала следующие результаты: стабилиза-ции при изменении входного напряжения на ±10% превышает 10 000, выходное сопротивление равно 3 МОм.

Все рассмотренные выше двуполярные стабилизато-ры напряжения представляют собой сочетание двух объ-единенных общим проводом однополярных стабилизатор ров, выходные напряжения которых устанавливают не-зависимо одно от другого. При таком построении дву-полярного стабилизатора трудно обеспечить равенство напряжений его плеч как при налаживании стабилиза- , так и в условиях его эксплуатации. В ряде слу-чаев, например в преобразователях « -напряжение», к двуполярному стабилизатору предъявляются ресьма высокие требования в отношении симметричности его выходного напряжения относительно общего провода. Выполнение таких требований сравнительно просто обе-спечивается в стабилизаторе, схема которого показана на рйс. 4.

Рис. 4. стабилизатора с симметричным выходным напряжением

Здесь, верхнее по схеме ничем не отличается от верхнего плеча предыдущего стабилизатора (см. рис. 3). же плечо построено иначе. В инверти-рующий вход ОУ соединен с общим проводом, и, следо-вательно, напряжение на этом входе равно нулю. Так как дифференциальное входное напряжение ОУ незна-чительно ( единицы милливольт), то и напря-жение на неинвертирующем входе будет равно нулю. Но этот вход ОУ подключен к средней точке делителя на-пряжения R 14 R 15, включенного между крайними выво-дами стабилизатора; Благодаря этому абсолютная ве-личина напряжения UВЫХ. н на выходе нижнего плеча ста-билизатора будет определяться следующим выражением:

где Uвых. н - напряжение верхнего плеча.

При равенстве сопротивлений резисторов R 14 и R 15 выходное нижнего плеча автоматически устанавливается равным напряжению верхнего, и устрой-ство постоянно «следит» за его значением. Например, если мы с помощью подстроечного резистора R 8 увели-чим напряжение UВых. в, это приведет к увеличению на-пряжения на неинвертирующем входе ОУ А2 и, следо-вательно, на его выходе. При этом V 8 начнет закрываться, напряжение на регулирующем транзис-торе V 6 уменьшится. Выходное напряжение нижнего плеча увеличится до такого уровня, при котором напря-жение на неинвертирующем входе ОУ А2 вновь станет равным нулю, т. е. до вновь установленного уровня UВЫX. B.

Таким образом, в рассматриваемом двуполярном стабилизаторе напряжение на выходе обоих плеч -навливается одним подстроечным резистором R 8, а ра-венство абсолютных величин положительного и отрица-тельного выходных напряжений при R 14 = R 15 опреде-ляется лишь классом точности этих резисторов.

По своим качественным показателям стабилизатор не отличается от предыдущего.

Применение в стабилизаторах напряжения мощных полевых транзисторов, несмотря на их неоспоримые преимущества - ультранизкое сопротивление открытого канала (единицы миллиом), позволяющее получить сверхмалое падение напряжения между входным и выходным напряжением (десятые доли вольта), большие токи (сотни ампер), низкая стоимость (особенно n-канальных транзисторов), - как известно, сопряжено с решением одной проблемы, связанной с высоким пороговым напряжением (2 - 5 В), которое требуется подать на затвор, чтобы открыть транзистор. Если, например, в стабилизаторе положительного напряжения на n-канальном транзисторе входное напряжение подается на сток, выходное снимается с истока, а затвором управляет ОУ, то при малом падении напряжения стабилизатора (между истоком и стоком транзистора) ОУ должен подать на затвор напряжение на 2 - 5 В выше истока, а значит и выше стока, то есть выше входного напряжения. Но где его взять, если кроме входного другого напряжения нет? К каким только ухищрениям не прибегают, чтобы получить напряжение выше входного: используют дополнительную обмотку трансформатора и выпрямитель на ее основе, различные схемы повышения входного напряжения, основанные на умножителях напряжения, а в некоторые современные микросхемы стабилизаторов даже встраивают DC/DC преобразователи.

Если же требуется двуполярный стабилизатор, то используют вышеупомянутые схемы с их недостатками.

Автор задался вопросом: а нельзя ли в двуполярном стабилизаторе использовать для питания ОУ, помимо входного напряжения стабилизатора, еще и входное напряжение другого стабилизатора, а в другом - входное первого? Как показал результат такого эксперимента, оказывается, можно. Мало того, автор получил такой низкий уровень размаха пульсаций выходного напряжения стабилизаторов при больших токах, какого даже не ожидал.

Дальнейшее изложение будет построено следующим образом. Вначале будут приведены известные упрощенные схемы стабилизаторов на ОУ и полевых транзисторах, затем уже принципиальные схемы на них основанные, далее будет дана разводка плат стабилизаторов, их фотографии и конструкция источника питания (ИП) на базе двуполярного стабилизатора. После этого будут приведены результаты испытаний стабилизаторов и, в частности, осциллограммы пульсаций выходных напряжений. В конце статьи будут подытожены выходные параметры стабилизаторов.

Упрощенные схемы

На Рисунке 1 показаны четыре варианта упрощенных схем стабилизаторов на базе ОУ и мощных полевых транзисторов.

Принцип действия стабилизатора на Рисунке 1а заключается в следующем. На сток n-канального полевого транзистора подается входное напряжение U ВХ, а стабилизированное выходное напряжение U ВЫХ снимается с истока, потенциал которого всегда ниже потенциала стока. Таким образом, в этой схеме транзистор работает в штатном режиме. ОУ сравнивает образцовое напряжение V REF , поданное на его неинвертирующий вход, с частью выходного, снятого с делителя R, поданного на его инвертирующий вход, и равного V REF при заданном U ВЫХ. Своим выходным напряжением ОУ воздействует на затвор транзистора таким образом, чтобы напряжение, снятое с делителя, всегда равнялось бы V REF независимо от входного напряжения и тока нагрузки. Например, при увеличении тока нагрузки выходное напряжение падает, в связи с чем падает и напряжение, снятое с делителя, а поскольку оно подано на инвертирующий вход ОУ, выходное напряжение ОУ увеличивается, отчего потенциал затвора повышается, и транзистор приоткрывается, восстанавливая выходное напряжение до прежнего уровня. Особенностью и основным недостатком этой схемы является тот факт, что напряжение затвора, при котором транзистор начинает открываться, всегда выше напряжения истока на 2 - 5 В. Поэтому, если положительное напряжение питания ОУ взято с входного напряжения, то оно должно быть всегда выше входного еще на несколько вольт, то есть еще на несколько вольт больше, чем 2 - 5 В, что недопустимо много. Но если другого напряжения, кроме входного, нет, то этой схемой пользоваться просто нельзя. А если есть? Тогда можно (и нужно!), и это как раз является одной из особенностей описываемых в статье стабилизаторов. Преимуществом схемы является использование в ней мощного n-канального полевого транзистора, который при прочих равных условиях в 2 - 5 раз дешевле p-канального. Кроме того, мощные n-канальные транзисторы в несколько раз более распространены, чем p-канальные и, наконец, n-канальные транзисторы по некоторым параметрам имеют недостижимые p-канальными транзисторами характеристики. Например, ультранизкого сопротивления открытого канала, доходящего до 2.4 мОм (IRFB3206), или огромной крутизны, минимальное значение которой 230 См (IRFB3306), у p-канальных транзисторов просто не бывает. Хотя по стоимости (около 1$) эти транзисторы (IRFB3206, IRFB3306) не превышают стоимости самых современных p-канальных транзисторов.

На Рисунке 1в показана упрощенная схема стабилизатора отрицательного напряжения, которая является «зеркальной» по отношению к схеме Рисунок 1а и работает аналогично (только для отрицательного напряжения), поэтому, на взгляд автора, в объяснении не нуждается. Дополнительным недостатком этой схемы является использование в ней p-канального полевого транзистора.

Здесь следует сделать некоторое отступление относительно выпрямительных схем, использующихся в двуполярных стабилизаторах.

Наиболее часто встречающаяся схема использует вторичную обмотку трансформатора с отводом от средней точки и две полумостовых схемы выпрямления по каждому из напряжений (положительному и отрицательному). Такая схема (ввиду простоты она не приводится) использует по два выпрямительных диода для каждой из полумостовых схем выпрямления, поэтому общее число диодов - четыре, что является несомненным преимуществом. Поскольку, как правило, трансформатор поставляется с двумя идентичными вторичными обмотками (а не с одной с отводом от средней точки), в подобной схеме выпрямления конец одной из обмоток соединяют с началом другой - это и есть средняя точка.

Реже встречается полномостовая схема выпрямления по каждому из напряжений двух вторичных обмоток, которая использует уже по 4 диода для каждого напряжения, и общее количество диодов равно 8, то есть в два раза больше чем первая. Хотя двукратное количество диодов является некоторым недостатком такой схемы выпрямления, из ее свойств можно извлечь одну очень интересную особенность, которая заключается в том, что оба выпрямленных напряжения изолированы друг от друга.

Здесь следует отметить, что идея такого дополнительного питания стабилизаторов не нова. Впервые, насколько это известно автору, такая идея использовалась в работе для питания стабилизатора, основанного на дискретных компонентах (то есть без применения микросхем), где в качестве силовых использовались биполярные транзисторы.

В работе в схеме стабилизаторов, основанной также на дискретных компонентах, использовались уже полевые транзисторы, однако сложность схемы привела к тому, что плата стабилизаторов получилась просто огромной (175×80 мм), да еще с двусторонней разводкой, изготовить которую своими силами весьма проблематично. Забегая вперед, отметим, что плата описываемого здесь двуполярного стабилизатора имеет одностороннюю разводку и размер всего 40×16 мм. Такую плату легко изготовить своими силами (см. далее).

Для получения дополнительного питания (от другого стабилизатора) в работах и использовались стабилитроны с их токоограничительными резисторами, а на схеме Рисунок 2, как уже упоминалось, - микросхемы стабилизаторов 78L24/79L24. Применение указанных микросхем вместо стабилитронов с резисторами оправдано по следующим причинам. Во-первых, низкая стабильность напряжения стабилитронов не идет ни в какое сравнение с относительно высокой стабильностью выходного напряжения микросхем, во-вторых, как это ни странно, микросхема дешевле, чем полуваттный стабилитрон плюс полуваттный резистор (а меньшую их мощность использовать нельзя, так как это приведет к нагреву резистора и стабилитрона и большой вероятности выхода из его из строя), и, в-третьих, микросхемы занимают меньше места на плате.

На Рисунке 2 силовые проводники выделены жирным. Диоды VD1 - VD4 служат для начального запуска стабилизаторов при включении питания.

Теперь после таких подробных предварительных пояснений нетрудно понять и работу принципиальных схем.

Литература

  1. Кузьминов А. Усовершенствованные стабилизаторы напряжения с активным фильтром. - Радио, 2017, № 9, с. 18, 19.
  2. Кузьминов А. Применение инструментального усилителя для мостового включения двух мощных ОУ. Часть 3. - Современная электроника, 2017, № 6, с. 74 - 80.
  3. Кузьминов А. Стабилизаторы на ОУ и мощных полевых транзисторах с активным электронным фильтром и защитой от превышения тока. Часть 2. - Современная электроника, 2018, № 1, с. 58 - 62.
  4. Кузьминов А. Изготовление устройств на печатных платах с высоким разрешением в домашних условиях. - Технологии в электронной промышленности, 2010, №8, с. 18 - 25; 2011, № 1, с. 9 - 13; № 2, с. 18 - 25.
  5. Кузьминов А. Технология изготовления печатных плат с высоким разрешением в любительских условиях. - Радио, 2017, № 10, с. 24 - 28.
  6. Орешкин В. Стабилизатор напряжения питания УМЗЧ. - Радио, 1987, № 8, с. 31.
  7. Муравцев М. Стабилизированный блок питания УМЗЧ. - Радио, 2017, № 2, с. 25 - 27; № 3, с. 17-19.
  8. Титце У., Шенк К. Полупроводниковая схемотехника. - М.: Мир. 1982.
  9. Хоровиц П., Хилл У. Искусство схемотехники. - М.: Мир. 1993.

Импульсные стабилизатора напряжения обладают высоким к.п.д. и малыми габаритами, поэтому они нашли широкое применение в современных источниках вторичного питания. Принципиальная схема импульсного стабилизатора напряжения последовательного типа на операционном усилителе приведена на рис. 4.19.

Рис. 19. Принципиальная схема импульсного стабилизатора напряжения последовательного типа на операционном усилителе

Схема измерительной цепи аналогична рис. 4. 17, но на операционном усилителе собран не усилитель, а компаратор с петлеобразной релейной характеристикой. Положительная обратная связь, создающая петлеобразную характеристику, осуществляется резистором R6, ширина петли определяется отношением сопротивлений резисторов R5 и R6. Сопротивление резистора R6 много больше сопротивления резистора R5, а ширина петли составляет несколько милливольт. Условно, статическая характеристика компаратора относительно напряжения делителя показана на рис. 4.20.

Рис. 4. 20. Статическая характеристика компаратора

Если напряжение превышает верхний порог U П2 , то напряжение компаратора минимальное, стабилитрон VD2 закрыт, транзисторы VT2 и VT1 закрыты, выходное напряжение с течением времени уменьшается. Если напряжение меньше нижнего порога U П1 , то напряжение компаратора максимальное, стабилитрон VD2 пробит, транзисторы VT2 и VT1 открыты, выходное напряжение с течением времени увеличивается. Возникают автоколебания напряжения U 2 относительно значения . Так как петля компаратора очень узкая, то отклонения напряжения U 2 считаются допустимыми. На рис. 4. 21 приведены временные диаграммы изменения напряжений КСН для двух значений входного напряжения.

Рис. 4. 21. Временные диаграммы напряжений импульсного КСН

Уменьшение напряжения U 1 привело к увеличению длительности импульса в напряжении U К (4.увеличению времени открытого состояния транзистора VT1) и уменьшению длительности паузы. Изменился и период следования импульсов. Диапазон изменения напряжения U 2 превышает зону, ограниченную пороговыми значениями, из-за колебательных процессов в LC-фильтре.

Наличие автоколебаний выходного напряжения является недостатком импульсных стабилизаторов напряжения, но это практически не сказывается на работе потребителей, питаемых от стабилизатора, а преимущества импульсного регулирования существенны. Следует отметить, что, так как транзисторы VT1 и VT2 разной проводимости, то возникает необходимость в запускающей цепи VD4, R9, которая работает, так же как и в схеме последовательного КСН на транзисторах разной проводимости.

Основным недостатком линейных стабилизаторов средней и большой мощности является их низкий КПД. Причем, чем меньше выходное напряжение источника питания, тем меньше становится его КПД. Это объясняется тем, что в режиме стабилизации силовой транзистор источника питания обычно включен последовательно с нагрузкой, а для нормальной работы такого стабилизатора на регулирующем транзисторе должно действовать напряжение коллектор-эмиттер (11кэ) не менее 3...5 В. При токах более 1 А это дает значительные потери мощности за счет выделения тепловой энергии, рассеиваемой на силовом транзисторе. Что приводит к необходимости увеличивать площадь теплоотводящего радиатора или применять вентилятор для принудительного охлаждения.

Широко распространенные благодаря низкой стоимости интегральные линейные стабилизаторы напряжения на микросхемах из серии 142ЕН(5...14) обладают таким же недостатком. В последнее время в продаже появились импортные микросхемы из серии "LOW DROP" (SD, DV, LT1083/1084/1085). Эти микросхемы могут работать при пониженном напряжении между входом и выходом (до 1...1.3 В) и обеспечивают на выходе стабилизированное напряжение в диапазоне 1,25...30 В при токе в нагрузке 7,5/5/3 А соответственно. Ближайший по параметрам отечественный аналог типа КР142ЕН22 имеет максимальный ток стабилизации 5 А.

При максимальном выходном токе режим стабилизации гарантируется производителем при напряжении вход-выход не менее 1,5 В. Микросхемы также имеют встроенную защиту от превышения тока в нагрузке допустимой величины и тепловую защиту от перегрева корпуса.

Данные стабилизаторы обеспечивают нестабильность выходного напряжения "0,05%/В, нестабильность выходного напряжения при изменении выходного тока от 10 мА до максимального значения не хуже 0,1 %/В. Типовая схема включения таких стабилизаторов напряжения приведена на рис. 4.1.

Конденсаторы С2...С4 должны располагаться вблизи от микросхемы и лучше, если они будут танталовые. Емкость конденсатора С1 выбирается из условия 2000 мкФ на 1 А тока. Микросхемы выпускаются в трех видах конструктивного исполнения корпуса, показанных на рис. 4.2. Вид корпуса задается последними буквами в обозначении. Более подробная информация по данным микросхемам имеется в справочной литературе, например J119.

Такие стабилизаторы напряжения экономически целесообразно применять при токе в нагрузке более 1 А, а также в случае недостатка места в конструкции. На дискретных элементах также можно выполнить экономичный источник питания. Приведенная на рис. 4.3 схема рассчитана для выходного напряжения 5 В и тока нагрузки до 1 А. Она обеспечивает нормальную работу при минимальном напряжении на силовом транзисторе (0,7... 1,3 В). Это достигается за счет использования в качестве силового регулятора транзистора (VT2) с малым напряжением икэ в открытом состоянии. Что позволяет обеспечить работу схемы стабилизатора при меньших напряжениях вход-выход.

Схема имеет защиту (триггерного типа) в случае превышения тока в нагрузке допустимой величины, а также превышения напряжения на входе стабилизатора величины 10,8 В.

Узел защиты выполнен на транзисторе VT1 и тиристоре VS1. При срабатывании тиристора он отключает питание микросхемы DA1 (вывод 7 закорачивается на общий провод). В этом случае транзистор VT3, а значит и VT2 закроются и на выходе будет нулевое напряжение. Вернуть схему в исходное состояние после устранения причины, вызвавшей перегрузку, можно только выключением и повторным включением блока питания.

Конденсатор СЗ обычно не требуется — его задача облегчить запуск схемы в момент включения.

Вернуть схему в исходное состояние после устранения причины, вызвавшей перегрузку, можно только выключением и повторным включением блока питания. Конденсатор СЗ обычно не требуется — его задача облегчить запуск схемы в момент включения. Топология печатной платы для монтажа элементов показана на рис. 4.4 (она содержит одну объемную перемычку). Транзистор VT2 устанавливается на радиатор.

При изготовлении использованы детали: подстроенный резистор R8 типа СПЗ-19а, остальные резисторы любого типа; конденсаторы С1 — К50-29В на 16 В, С2...С5 — К10-17, С5 — К52-1 на 6,3 В. Схему можно дополнить светодиодным индикатором срабатывания защиты (HL1). Для этого потребуется установить дополнительные элементы: диод VD3 и резистор R10, как это показано на рис. 4.5.

Литература: И.П. Шелестов - Радиолюбителям полезные схемы, книга 3.

Рассматриваемый компенсационный стабилизатор напряжения непрерывного действия снижает максимальное значение мощности, рассеиваемое регулирующим транзистором в режиме короткого замыкания. Принципиальная электрическая схема стабилизатора приведена на рис. 5.

Режим ограничение тока

Резистор R 1 является датчиком тока. При перегрузке по току на R 1 возникает напряжение, которое через резистор R 2 подается на базо-эмиттерный переход транзистора VT 3 , которыйприоткрывается. В результате появляются базовый и коллекторный токи VT 3 , которые уменьшают базовый ток транзистора VT 2 , соответственно уменьшаются коллекторные токи транзисторов VT 2 иVT 1 , что приводит к ограничению выходного тока стабилизатора напряжения.

Защита от короткого замыкания

Для защиты используется 2 резистора – R 2 и R 3 и при нормальном режиме работы

напряжение на эмиттере транзистора VT 1 равно выходному. При коротком замыкании выходное напряжение равно нулю, соответственно напряжение на эмиттере транзистора VT 1

тоже равно нулю и все входное напряжение приложено к резисторам R 2 и R 3 . Напряжение на

R 2 возрастает и к нему прибавляется падение напряжения на R 1 , что приводит к открытию

Рис. 5. Принципиальная электрическая схема стабилизатора напряжения

на ОУ с изменяющимся уровнем ограничения тока

и с защитой от короткого замыкания

транзистора VT 3 . Резисторы R 2 и R 3 рассчитаны таким образом, чтобы коллекторный ток VT 3 в режиме короткого замыкания составлял примерно 80% от базового тока VT 2 . Соответственно, базовый ток VT 2 снижается примерно в 5 раз, что приводит к снижению коллекторного тока VT 1 тоже в 5 раз. Тем самым транзистор VT 1 защищается от перегрузки при коротком замыкании.

Стабилизация выходного напряжения

Если в нормальном режиме работы по каким-то причинам выходное напряжение стабилизатора изменяется, то изменяется и напряжение, создаваемое делителем R 6 , R 7 , R 8 в точке А. Операционный усилитель DA 1 усиливает разницу между опорным напряжением () и напряжением в точкеA (), которое можно посчитать по формуле

Если напряжение на выходе стабилизатора уменьшилось, то разница будетположительной иувеличивается, что приводит к уменьшению тока, проходящего через стабилитронVD 3 , который является частью тока, проходящего через R 4 .Другая часть уходит на базу транзистораVT 2 и на выход операционного усилителяDA 1 . Соответственно, если уменьшается, то увеличиваются токи,и,и, соответственно, увеличивается. При увеличениисхема стабилизации работает по аналогичной цепочке (уменьшая отклонение.

Стабилитрон VD 3 включается для того, чтобы операционный усилитель DA 1 работал в активном режиме, при котором должно составлять примерно половину напряжения питания операционного усилителя(+U). Выходное напряжение самого стабилизатора () может быть значительно выше. На базе транзистораVT 2 напряжение выше, чем на 2. Соответственно, разница междуи напряжением на базеVT 2 составляет определенную величину, которая компенсируется с помощью стабилитрона VD 3