Простейшие тригонометрические неравенства план конспект урока. План-конспект урока по алгебре на тему "Тригонометрические неравенства

Модель урока на тему:

«Решение тригонометрических уравнений и неравенств»

в рамках реализации регионального компонента по математике

для учащихся 10 класса.

Помыкалова

Елена Викторовна

учитель математики

МОУ СОШ поселка Восход

Балашовского района

Саратовской области

Цель урока.

1. Обобщить теоретические знания по теме: «Решение тригонометрических уравнений и неравенств», повторить основные методы решения тригонометрических уравнений и неравенств.

2. Развивать качества мышления: гибкость, целенаправленность, рациональность. Организовать работу учащихся по указанной теме на уровне, соответствующем уровню уже сформированных знаний.

3. Воспитывать аккуратность записей, культуру речи, самостоятельность.

Тип урока: урок обобщения и систематизации знаний, приобретенных при изучении данной темы.

Методы обучения: системное обобщение, тестовая проверка уровня знаний, решение обобщающих задач.

Формы организации урока: фронтальная, индивидуальная.

Оборудование: компьютер , мультимедийный проектор, бланки ответов, карточки с заданием, таблица формул корней тригонометрических уравнений.

Ход урока.

I . Начало урока

Учитель сообщает учащимся тему урока, цель, обращает внимание учащихся на раздаточный материал.

II . Контроль знаний учащихся

1) Устная работа (Задание проектируется на экран)

Вычислите:

а) ;

б) ;

в) ;

г) ;

д) ;
е) .

2) Фронтальный опрос учащихся.

Какие уравнения называются тригонометрическими?

Какие виды тригонометрических уравнений вы знаете?

Какие уравнения называются простейшими тригонометрическими уравнениями?

Какие уравнения называются однородными?

Какие уравнения называются квадратными?

Какие уравнения называются неоднородными?

Какие способы решения тригонометрических уравнений вы знаете?

После ответа учащихся на экран проектируются некоторые способы решения тригонометрических уравнений.

    Введение новой переменной:

1 . 2sin²x – 5sinx + 2 = 0. №2. tg + 3ctg = 4.

Пусть sinx = t, |t|≤1, Пусть tg = z,

Имеем: 2 t ² – 5 t + 2 = 0. Имеем: z + = 4.

2. Разложение на множители :

2 sinx cos 5 x cos 5 x = 0;

cos5x (2sinx – 1) = 0.

Имеем : cos5x = 0,

2sinx – 1 = 0; …

3. Однородные тригонометрические уравнения:

I степени II степени

a sinx + b cosx = 0, (a,b ≠ 0). a sin²x + b sinx cosx + c cos²x = 0.

Разделим на cosx ≠ 0. 1) если а ≠ 0, разделим на cos ² x ≠ 0

Имеем : a tgx + b = 0; … имеем : a tg²x + b tgx + c = 0.

2) если а = 0, то

имеем: b sinx cosx + c cos ² x =0;…

4. Неоднородные тригонометрические уравнения:

Уравнения вида: asinx + bcosx = c

4 sinx + 3 cosx = 5.

(Показать два способа)

1)применение универсальной подстановки:

sinx = (2 tg x /2) / (1 + tg 2 x /2);

cosx = (1– tg 2 x /2) / (1 + tg 2 x /2);

2)введение вспомогательного аргумента:

4 sinx + 3 cosx = 5

Разделим обе части на 5:

4/5 sinx + 3/5 cosx = 1

Т. к. (4/5) 2 +(3/5) 2 = 1, то пусть 4/5 = sinφ ; 3/5= cosφ , где 0< φ < π /2, тогда

sinφsinx + cosφcosx = 1

cos (x φ ) = 1

x – φ = 2 πn , n Z

x = 2 πn + φ , n Z

φ = arccos 3/5, значит, x = arcos 3/5 +2 πn , n Z

Ответ: arccos 3/5 + 2 πn , n Z

3)Решение уравнений с применением формул понижения степени.

4)Применение формул двойного и тройного аргументов.

a) 2sin4xcos2x = 4cos 3 2x – 3cos2x

cos6x +cos2x = cos6x

III . Выполнение тестового задания

Учитель предлагает учащимся применить только что сформулированные теоретические факты к решению уравнений.

Задание проводится в виде теста. Учащимися заполняется бланк ответов, находящийся у них на партах.

Задание проектируется на экран.

Предложите способ решения данного тригонометрического уравнения:

1) приведение к квадратному;

2) приведение к однородному;

3) разложение на множители;

4) понижение степени;

5) преобразование суммы тригонометрических функций в произведение.

Бланк ответов.

Вариант I

Уравнение

Способы решения

3 sin²x + cos²x = 1 - sinx cosx

4 со s²x - cosx – 1 = 0

2 sin² x / 2 + cosx = 1

cosx + cos3x = 0

2 sinx cos5x – cos5x = 0

Вариант II

Уравнение

Способы решения

2sinxcosx – sinx = 0

3 cos²x - cos2x = 1

6 sin²x + 4 sinx cosx = 1

4 sin²x + 11sin²x = 3

sin3x = sin17x

Ответы:

Вариант I Вариант II

IV . Повторение формул для решения уравнений

Формулы корней тригонометрических уравнений.

Общие

Частные

Уравнение

Формула корней

Уравнение

Формула корней

1. sinx = a, |a|≤1

x = (-1) n arcsin a + πk,

k є Z

1. sinx = 0

x = πk, k є Z

2. cosx = a, |a|≤1

x = ±arccos a + 2πk,

k є Z

2. sinx = 1

x = + 2πk , k є Z

3. tg x = a

x = arctg a + πk, k є Z

3. sinx = –1

x = – + 2πk , k є Z

4. ctg x = a

x = arcctg a + πk,k є Z

4. cosx = 0

x = + πk , k є Z

5. cosx = 1

x = 2πk , k є Z

6. cosx = –1

x = π + 2πk , k є Z

Устная работа по решению простейших тригонометрических уравнений

Учитель предлагает учащимся применить только что сформулированные теоретические факты к решению уравнений. На экран проектируется тренажёр для устной работы по теме: «Тригонометрические уравнения»

Решить уравнения.

sin x = 0

cos x = 1

tg x = 0

ctg x = 1

sin x = - 1 / 2

sin x = 1

cos x = 1 / 2

sin x = - √3 / 2

cos x = √2 / 2

sin x = √2 / 2

cos x = √3 / 2

tg x = √3

sin x = 1 / 2

sin x = -1

cos x = - 1 / 2

sin x = √3 / 2

tg x = -√3

ctg x = √3 / 3

tg x = - √3 / 3

ctg x = -√3

cos x – 1 =0

2 sin x – 1 =0

2ctg x + √3 = 0

V . Решение примеров.

Карточки с заданиями раздаются на каждую парту, одна – на учительском столе для учеников, выходящих к доске.

1. Найдите среднее арифметическое всех корней уравнения , удовлетворяющие условию ;

Решение.

Найдем среднее арифметическое всех корней заданного уравнения из промежутка .

.

Ответ: а) .

2 . Решите неравенство .

Решение.

,

,

.

Ответ:

3. Решите уравнение .

(Совместно определить метод решения задачи )

Решение.

Оценим правую и левую части последнего равенства.

Следовательно, равенство выполняется тогда и только тогда, когда выполняется система

Ответ: 0,5

VI . Самостоятельная работа

Учитель выдает задания для самостоятельной работы. Карточки подготовлены по уровням сложности.

Более подготовленным учащимся можно дать карточки с задачами повышенного уровня сложности.

Учащимся 2-й группы учитель выдал карточки с заданиями базового уровня сложности.

Для учащихся 3-й группы учителем составлены карточки с заданиями базового уровня сложности, но это, как правило, учащиеся со слабой математической подготовкой, они могут выполнять задания под контролем учителя.

Вместе с заданиями учащиеся получают бланки для выполнения заданий.

1 группа

Вариант №1 (1)

1. Решите уравнение

2. Решите уравнение .

Вариант №2 (1)

1. Решите уравнение .

2. Решить уравнение .

2 группа

Вариант №1 (2)

1. Решите уравнение .

2. Решите уравнение .


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Решение тригонометрических неравенств методом интервалов 10 А класс Учитель: Ускова Н.Н. МБОУ Лицей №60 Цели урока: Образовательные: расширение и углубление знаний по теме “Метод интервалов”; обретение практических навыков выполнения заданий, используя метод интервалов;повышение уровня математической подготовки школьников;Развивающие:развитие навыков исследовательской деятельности;Воспитательные:формирование наблюдательности, самостоятельности, способности к взаимодействию с другими людьмивоспитание культуры мышления, культуры речи, интереса к учебному предмету. Ход урока Проверка домашнего задания.Самостоятельная работа.Объяснение нового материала по теме «Решение тригонометрических неравенств методом интервалов»:алгоритм решения;примеры неравенств.Итоги урока.Домашнее задание. Проверка домашнего задания Решите неравенства: Самостоятельная работа Дополнительно: 1) 2) Проверка домашнего задания Решите неравенства:а) Решение. Ответ: б) Решение. Ответ: в) Решение. Ответ: г) Решение. Ответ: . Решить неравенство Решение. Ответ: Пример 1. Решить неравенство методом интервалов Решение. 1) 2) Нули функции: 3) Знаки функции на интервалах: + - + - + 4) Так как неравенство нестрогое, то корни включаются 5) Решение: Ответ: Пример 2. Решить неравенство: Решение. Ответ: I способ: II способ: Ответ: Решение тригонометрических неравенств методом интервалов Алгоритм:С помощью тригонометрических формул разложить на множители.Найти точки разрыва и нули функции, поставить их на окружность.Взять любую точку x0 (но не найденную ранее) и выяснить знак произведения. Если произведение положительно, то поставить «+» за единичной окружностью на луче, соответствующему углу. Иначе поставить знак «-» внутри окружности.Если точка встречается четное число раз, назовем ее точкой четной кратности, если нечетное число раз – точкой нечетной кратности. Провести дуги следующим образом: начать с точки x0 , если следующая точка нечетной кратности, то дуга пересекает окружность в этой точке, если же точка четной кратности, то не пересекает.Дуги за окружностью – положительные промежутки; внутри окружности – отрицательные промежутки. Решение примеров 1) 2) 3) 4) 5) Пример 1. Решение. Точки первой серии: Точки второй серии: - - - + + + Ответ: Пример 2. Решение. Точки первой серии: Точки второй серии: Точки третей серии: Точки четвертой серии: Точки четной кратности: + + + + - - - - Ответ: Пример 3. Решение. Итого: Точки первой серии: Точки второй серии: Точки третей серии: + + + + + + - - - - - - - - Ответ. Точки четной кратности: Пример 4. Решение. + + + + - - - - Ответ. Пример 5. Решение. 1) 2) Нули функции: 3) + - - + - нулей нет Итак, при Ответ: Графически: Домашнее задание: Решить тригонометрические неравенства методом интервалов:а)б) в) г)д) е)ж) Дополнительные задания:


Приложенные файлы

Тема «Тригонометрические неравенства» является объективно сложной для восприятия и осмысления учащимися 10 класса. Поэтому очень важно последовательно, от простого к сложному формировать понимание алгоритма и вырабатывать устойчивый навык решения тригонометрических неравенств.

В статье представлен алгоритм решения простейших тригонометрических неравенств и приведен конспект урока, на котором осваиваются более сложные типы тригонометрических неравенств.

Скачать:


Предварительный просмотр:

Щалпегина И.В.

Тема «Тригонометрические неравенства» является объективно сложной для восприятия и осмысления учащимися 10 класса. Поэтому очень важно последовательно, от простого к сложному формировать понимание алгоритма и вырабатывать устойчивый навык решения тригонометрических неравенств.

Успех освоения данной темы зависит от знания основных определений и свойств тригонометрических и обратных тригонометрических функций, знания тригонометрических формул, умения решать целые и дробно-рациональные неравенства, основные виды тригонометрических уравнений.

Особый упор нужно делать на методике обучения решения простейших тригонометрических неравенств, т.к. любое тригонометрическое неравенство сводится к решению простейших неравенств.

Первичное представление о решении простейших тригонометрических неравенств предпочтительно вводить, используя графики синуса, косинуса, тангенса и котангенса. И только после учить решать тригонометрические неравенства на окружности.

Остановлюсь на основных этапах рассуждения при решении простейших тригонометрических неравенств.

  1. Находим на окружности точки, синус (косинус) которых равен данному числу.
  2. В случае строгого неравенства отмечаем на окружности эти точки, как выколотые, в случае нестрогого – как заштрихованные.
  3. Точку, лежащую на главном промежутке монотонности функции синус (косинус), называем Р t1, другую точку – Р t2 .
  4. Отмечаем по оси синусов (косинусов) промежуток, удовлетворяющий данному неравенству.
  5. Выделяем на окружности дугу, соответствующую данному промежутку.
  6. Определяем направление движения по дуге (от точки Р t1 к точке Р t2 по дуге ), изображаем стрелку по направлению движения, над которой пишем знак «+» или «-» в зависимости от направления движения. (Этот этап важен для контроля найденных углов. Ученикам можно проиллюстрировать распространенную ошибку нахождения границ интервала на примере решения неравенства по графику синуса или косинуса и по окружности ).
  7. Находим координаты точек Р t1 (как арксинус или арккосинус данного числа) и Р t2 т.е. границы интервала, контролируем правильность нахождения углов, сравнивая t 1 и t 2.
  8. Записываем ответ в виде двойного неравенства (или промежутка) от меньшего угла до большего.

Рассуждения при решении неравенств с тангенсом и котангенсом аналогичны.

Рисунок и запись решения, которые должны быть отражены в тетради у учеников, приведены в предлагаемом конспекте.

Конспект урока по теме: «Решение тригонометрических неравенств».

Задача урока – продолжить изучение решения тригонометрических неравенств, содержащих функции синус и косинус, перейти от простейших неравенств к более сложным.

Цели урока:

  1. закрепление знаний тригонометрических формул, табличных значений тригонометрических функций, формул корней тригонометрических уравнений;
  2. формирование навыка решения простейших тригонометрических неравенств;
  3. освоение приёмов решения более сложных тригонометрических неравенств;
  4. развитие логического мышления, смысловой памяти, навыков самостоятельной работы, самопроверки;
  5. воспитание аккуратности и чёткости в оформлении решения, интереса к предмету, уважения к одноклассникам.
  6. формирование учебно-познавательных, информационных, коммуникативных компетенций.

Оборудование: графопроектор, раздаточные карточки с готовыми чертежами тригонометрических кругов, переносная доска, карточки с домашним заданием.

Форма организации обучения – урок. Методы обучения, используемые на уроке – словесные, наглядные, репродуктивные, проблемно-поисковые, индивидуального и фронтального опроса, устного и письменного самоконтроля, самостоятельной работы.

N п/п

Этапы урока.

Организация класса на работу.

Проверка домашнего задания.

(Сбор тетрадей с домашней работой)

Формулировка цели урока.

Сегодня на уроке повторим решение простейших тригонометрических неравенств и рассмотрим более сложные случаи.

Устная работа.

(Задания и ответы записаны на кодоскопной ленте, открываю ответы по ходу решения)

  1. Решить тригонометрические уравнения:

sinx = -, 2sinx =, sin2x = , sin(x -) = 0, cosx = ,

cosx = -, cos2x = 1, tgx = -1.

  1. Назовите главные промежутки монотонности функций синус и косинус.

Повторение.

Вспомним алгоритм решения простейших тригонометрических неравенств.

(На доске – заготовки двух окружностей. Вызываю по одному двух учащихся для решения неравенств. Ученик подробно объясняет алгоритм решения. Класс работает совместно с отвечающими у доски на заранее подготовленных карточках с изображением окружности).

1) sinx ≥ -;

t 1  t 2 ;

t 1 = arcsin(-) = -;

t 2 =  + = ;

2) cosx ≥ -;

t 1  t 2 ;

t 1 = arccos(-) =  - arccos =

=  - = ;

t 2 = - ;

2  n ≤ х ≤ + 2  n, n  Z.

Каким образом отражается на ответе решение строгого неравенства?

(3) и 4) неравенства два ученика решают на кодоскопной ленте, класс – самостоятельно на карточках).

3) cosx  ;

t 1  t 2 ;

t 1 = arccos = ;

t 2 = 2  - = ;

4) sinx  ;

t 1  t 2 ;

t 1 = arcsin = ;

t 2 = -  - = -;

2  n  х  + 2  n, n  Z.

Поменяйтесь вариантами, возьмите ручку другого цвета, проверьте работу товарища.

(Самопроверка с кодоскопной ленты. Комментирует решение ученик, выполняющий задание. После возвращения работ – рефлексия).

Как измениться решение неравенства при замене аргумента х на 2х, на?(Оценивание работ учащихся).

Новый материал.

Переходим к более сложным тригонометрическим неравенствам,

решение которых будет сводиться к решению простейших тригонометрических неравенств. Рассмотрим примеры.

(Решение неравенств на доске под руководством учителя).

№1. cos 2 2x – 2cos2x ≥ 0.

(Вспомним прием решения тригонометрических уравнений вынесением общего множителя за скобку).

cos2x(cos2x – 2) ≥ 0.

Замена: cos2x = t, ≤ 1; t(t – 2) ≥ 0; Второе неравенство не удовлетворяет условию ≤ 1.

cos2x ≤ 0. (Решить неравенство самостоятельно. Проверить ответ).

Ответ: +  n  х  +  n, n  Z.

№2. 6sin 2 x – 5sinx + 1 ≥ 0.

(Вспомним прием решения тригонометрических уравнений заменой переменной. У доски решает ученик с комментариями).

Замена sinx = t, ≤ 1. 6t 2 – 5t +1 ≥ 0, 6(t -)(t -),

Ответ: + 2  n ≤ х ≤ + 2  n, -  -arcsin+ 2  k ≤ х ≤ arcsin+ 2  k,

n, k  Z.

№3. sinx + cos2x  1.

(Обсуждаем варианты решения. Вспоминаем фомулу косинуса двойного угла. Класс решает самостоятельно, один ученик – на индивидуальной доске с последующей проверкой).

sinx + cos2x - 1  0, sinx – 2sin 2 x  0, sinx(1 - 2 sinx)  0,

Ответ:

2  n  x  + 2  n,

2  n  x   + 2  n, n  Z.

Проанализировать ситуации, когда ответ к решению квадратного неравенства записываем в виде совокупности двух неравенств, а когда – в виде системы. Полезна следующая схема:

№4. coscosx - sinsinx  -.

(Обсуждение. К доске вызываются по одному ученику на каждый шаг решения, комментируются этапы. Учитель проверяет запись у учеников, работающих на месте).

cos(x +)  -, cost  -.

2  n  t  + 2  n, n  Z,

2  n  x +  + 2  n, n  Z,

Ответ:

2  n  x  + 2  n, n  Z.

№5. Определите все а , при каждом из которых неравенство

4sinx + 3cosx ≤ а имеет хотя бы одно решение.

(Вспомнить алгоритм решения тригонометрического уравнения с нормирующим множителем. Решение записано на кодоскопной ленте. Открываю его поэтапно по мере рассуждений. Дифференцированная работа).

4sinx + 3cosx ≤ а , М = = 5. Разделим обе части неравенства на 5: sinx + cosx ≤ . Так как () 2 + () 2 = 1, то существует такой угол α, что cosα = , а sinα = . Перепишем предыдущее неравенство в виде: sin(x + α) ≤ . Последнее неравенство, а, значит, и исходное неравенство имеет хотя бы одно решение при каждом а таком, что

≥ -1, то есть при каждом а ≥ -5. Ответ: а ≥ -5.

Домашнее задание.

(Раздаю карточки с записью домашнего задания. Комментирую решение каждого неравенства).

  1. cosx  sin 2 x;
  2. 4sin2xcos2x  -;
  3. cos 2 ≤ sin 2 - 0,5;
  4. sinx + cosx  1.

Повторить тригонометрические формулы сложения, подготовиться к самостоятельной работе.

Подведение итогов, рефлексия.

Назовите приемы решения тригонометрических неравенств.

Каким образом знание алгоритма решения простейших тригонометрических неравенств используется при решении более сложных неравенств?

Какие неравенства вызвали наибольшее затруднение?

(Оцениваю работу учащихся на уроке).

Самостоятельная работа

по результатам освоения материала.

Вариант 1.

Решите неравенства 1 – 3:

  1. sin3x -  0;
  2. cos 2 x + 3cosx  0;
  3. coscos2x - sinsin2x ≥ -.
  4. Определите все а , при каждом из которых неравенство 12sinx + 5cosx ≤ а имеет хотя бы одно решение.

Вариант 2.

Решите неравенства 1 – 3:

  1. 2cos  1;
  2. sin 2 x – 4sinx  0;
  3. sincos3x - cossin3x ≤ -.
  4. Определите все а , при каждом из которых неравенство 6sinx - 8cosx ≤ а имеет хотя бы одно решение.

ТЕМА УРОКА: Решение простейших тригонометрических неравенств

Цель урока: показать алгоритм решения тригонометрических неравенств с использованием единичной окружности.

Задачи урока :

    Образовательные – обеспечить повторение и систематизацию материала темы; создать условия контроля усвоения знаний и умений;

    Развивающие – способствовать формированию умений применять приемы: сравнения, обобщения, выявления главного, переноса знаний в новую ситуацию, развитию математического кругозора, мышления и речи, внимания и памяти;

    Воспитательные – содействовать воспитанию интереса к математике и ее приложениям, активности, мобильности, умения общаться, общей культуры.

Знания и навыки учащихся:
- знать алгоритм решения тригонометрических неравенств;

Уметь решать простейшие тригонометрические неравенства.

Оборудование: интерактивная доска, презентация к уроку, карточки с заданиями самостоятельной работы.

ХОД УРОКА:
1. Организационный момент (1 мин)

Девизом урока предлагаю слова Сухомлинского: « Сегодня – мы учимся вместе: я, ваш учитель и вы мои ученики. Но в будущем ученик должен превзойти учителя, иначе в науке не будет прогресса».

2. Разминка. Диктант «Верно - неверно»

3. Повторение

Для каждого варианта - задания на слайде, продолжите каждую запись. Время выполнения 3 мин.

Давайте выполним взаимопроверку этой нашей работы, используя таблицу ответов на доске.

Критерий оценки: «5» - все 9 «+», «4» - 8 «+», «3» - 6-7 «+»

4. Актуализация знаний учащихся (8 мин)
Сегодня на уроке мы должны усвоить понятие тригонометрического неравенства и овладеть навыками решения таких неравенств.
– Давайте вначале вспомним, что такое единичная окружность, радианная мера угла и как связан угол поворота точки на единичной окружности с радианной мерой угла. (работа с презентацией)

Единичная окружность - это окружность с радиусом 1 и центром в начале координат.

Угол, который образован положительным направлением оси OX и лучом OA, называется углом поворота. Важно запомнить, где находятся углы 0; 90; 180; 270; 360.

Если A перемещается против часовой стрелки, получаются положительные углы.

Если A перемещается по часовой стрелке, получаются отрицательные углы.

сos t – это абсцисса точки единичной окружности, sin t – ордината точки единичной окружности, t – угол поворота с координатами (1;0).
5 . Объяснение нового материала (17 мин )
Сегодня мы познакомимся с простейшими тригонометрическими неравенствами.
Определение.
Простейшими тригонометрическими неравенствами называют неравенства вида:

Как решить такие неравенств нам расскажут ребята (представление проектов учащимися с примерами). Определения и примеры учащиеся записывают в тетради.

В ходе выступления учащиеся объясняют решение неравенства, учитель дополняет рисунки на доске.
Алгоритм решения простейших тригонометрических неравенств дается после выступления учащихся. Все этапы решения неравенства учащиеся видят на экране. Это способствует зрительному запоминанию алгоритма решения данной задачи.

Алгоритм решения тригонометрических неравенств с помощью единичной окружности:
1. На оси, соответствующей заданной тригонометрической функции, отметить данное числовое значение этой функции.
2. Провести через отмеченную точку прямую, пересекающую единичную окружность.
3. Выделить точки пересечения прямой и окружности с учетом строгого или нестрогого знака неравенства.
4. Выделить дугу окружности, на которой расположены решения неравенства.
5. Определить значения углов в начальной и конечной точках дуги окружности.
6. Записать решение неравенства с учетом периодичности заданной тригонометрической функции.
Для решения неравенств с тангенсом и котангенсом полезно понятие о линии тангенсов и котангенсов. Таковыми являются прямые x = 1 и y = 1 соответственно, касающиеся тригонометрической окружности.
6. Практическая часть (12 мин)
Для отработки и закрепления теоретических знаний выполним небольшие задания. Каждый учащийся получает карточки с заданиями. Решив неравенства, нужно выбрать ответ и записать его номер.

7. Рефлексия деятельности на уроке
- Какая цель стояла перед нами?
- Назовите тему урока
- Получилось воспользоваться известным алгоритмом
- Проанализируйте свою работу на уроке.

8. Домашнее задание (2 мин)

Решите неравенство:

9. Итог урока (2 мин)

Предлагаю закончить урок словами Я.А.Коменского: “ Считай несчастным тот день или тот час, в который ты не усвоил ничего нового и ничего не прибавил к своему образованию ”.

На практическом занятии мы повторим основные типы заданий из темы «Тригонометрия» , дополнительно разберем задачи повышенной сложности и рассмотрим примеры решения различных тригонометрических неравенств и их систем .

Данный урок поможет Вам подготовиться к одному из типов заданий В5, В7, С1 и С3 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 11. Закрепление пройденного материала. Тригонометрические неравенства. Решение различных задач повышенной сложности

Практика

Конспект урока

Повторение тригонометрии

Начнем с повторения основных типов заданий, которые мы рассмотрели в теме «Тригонометрия» и решим несколько нестандартных задач.

Задача №1 . Выполнить перевод углов в радианы и градусы: а) ; б) .

а) Воспользуемся формулой перевода градусов в радианы

Подставим в нее указанное значение .

б) Применим формулу перевода радиан в градусы

Выполним подстановку .

Ответ. а) ; б) .

Задача №2 . Вычислить: а) ; б) .

а) Поскольку угол далеко выходит за рамки табличного, уменьшим его с помощью вычитания периода синуса. Т. к. угол указан в радианах, то и период будем рассматривать как .

б) В данном случае ситуация аналогичная. Поскольку угол указан в градусах, то и период тангенса будем рассматривать как .

Полученный угол хоть и меньше периода, но больше , а это значит, что он относится уже не к основной, а к расширенной части таблицы. Чтобы не тренировать лишний раз свою память запоминанием расширенной таблицы значений тригофункций, вычтем период тангенса еще раз:

Воспользовались нечетностью функции тангенс.

Ответ. а) 1; б) .

Задача №3 . Вычислить , если .

Приведем все выражение к тангенсам, разделив числитель и знаменатель дроби на . При этом, можем не бояться, что , т. к. в таком случае значения тангенса не существовало бы.

Задача №4 . Упростить выражение .

Указанные выражения преобразовываются с помощью формул приведения. Просто они непривычно записаны с использованием градусов. Первое выражение вообще представляет собой число. Упростим все тригофункции по очереди:

Т. к. , то функция меняется на кофункцию, т. е. на котангенс, и угол попадает во вторую четверть, в которой у исходного тангенса знак отрицательный.

По тем же причинам, что и предыдущем выражении, функция меняется на кофункцию, т. е. на котангенс, а угол попадает в первую четверть, в которой у исходного тангенса знак положительный.

Подставим все в упрощаемое выражение:

Задача №5 . Упростить выражение .

Распишем тангенс двойного угла по соответствующей формуле и упростим выражение:

Последнее тождество является одной из формул универсальной замены для косинуса.

Задача №6 . Вычислить .

Главное, это не сделать стандартной ошибки и не дать ответ, что выражение равно . Воспользоваться основным свойством арктангенса нельзя пока возле него присутствует множитель в виде двойки. Чтобы от него избавиться распишем выражение по формуле тангенса двойного угла , при этом относимся к , как к обыкновенному аргументу.

Теперь уже можно применять основное свойство арктангенса, вспомним, что на его численный результат ограничений нет.

Задача №7 . Решить уравнение .

При решении дробного уравнения, которое приравнивается к нулю, всегда указывается, что числитель равен нулю, а знаменатель нет, т. к. на ноль делить нельзя.

Первое уравнение представляет собой частный случай простейшего уравнения, которое решается с помощью тригонометрической окружности. Вспомните самостоятельно этот способ решения. Второе неравенство решается как простейшее уравнение по общей формуле корней тангенса, но только с записью знака неравно.

Как видим, одно семейство корней исключает другое точно такое же по виду семейство не удовлетворяющих уравнению корней. Т. е. корней нет.

Ответ. Корней нет.

Задача №8 . Решить уравнение .

Сразу заметим, что можно вынести общий множитель и проделаем это:

Уравнение свелось к одной из стандартных форм, когда произведение нескольких множителей равно нулю. Мы уже знаем, что в таком случае или один из них равен нулю или другой, или третий. Запишем это в виде совокупности уравнений:

Первые два уравнения являются частными случаями простейших, с подобными уравнениями мы уже многократно встречались, поэтому сразу укажем их решения. Третье уравнение приведем к одной функции с помощью формулы синуса двойного угла.

Решим отдельно последнее уравнение:

Данное уравнение не имеет корней, т. к. значение синуса не могут выходить за пределы .

Таким образом, решением является только два первых семейства корней, их можно объединить в одно, что легко показать на тригонометрической окружности:

Это семейство всех половин , т. е.

Тригонометрические неравенства

Перейдем к решению тригонометрических неравенств. Сначала разберем подход к решению примера без использования формул общих решений, а с помощью тригонометрической окружности.

Задача №9 . Решить неравенство .

Изобразим на тригонометрической окружности вспомогательную линию, соответствующую значению синуса равному , и покажем промежуток углов, удовлетворяющих неравенству.

Очень важно понять, как именно указывать полученный промежуток углов, т. е. что является его началом, а что концом. Началом промежутка будет угол, соответствующей точке, в которую мы войдем в самом начале промежутка, если будем двигаться против часовой стрелки. В нашем случае это точка, которая находится слева, т. к. двигаясь против часовой стрелки и проходя правую точку, мы наоборот выходим из необходимого промежутка углов. Правая точка будет, следовательно, соответствовать концу промежутка.

Теперь необходимо понять значения углов начала и конца нашего промежутка решений неравенства. Типичная ошибка - это указать сразу, что правой точке соответствует угол , левой и дать ответ . Это неверно! Обратите внимание, что мы только что указали промежуток, соответствующий верхней части окружности, хотя нас интересует нижняя, иными словами, мы перепутали начало и конец необходимого нам интервала решений.

Чтобы интервал начинался с угла правой точки, а заканчивался углом левой точки, необходимо, чтобы первый указанный угол был меньше второго. Для этого угол правой точки нам придется отмерять в отрицательном направлении отсчета, т. е. по часовой стрелке и он будет равен . Тогда, начиная движение с него в положительном направлении по часовой стрелке, мы попадем в правую точку уже после левой точки и получим для нее значение угла . Теперь начало промежутка углов меньше конца , и мы можем записать промежуток решений без учета периода:

Учитывая, что такие промежутки будут повторяться бесконечное количество раз после любого целого количества поворотов, получим общее решение с учетом периода синуса :

Круглые скобки ставим из-за того, что неравенство строгое, и точки на окружности, которые соответствуют концам промежутка, мы выкалываем.

Сравните полученный ответ с формулой общего решения, которую мы приводили на лекции.

Ответ..

Указанный способ хорош для понимания того, откуда берутся формулы общих решений простейших тригонеравенств. Кроме того, он полезен для тех, кому лень учить все эти громоздкие формулы. Однако сам по себе способ тоже непростой, выберете, какой подход к решению вам наиболее удобен.

Для решения тригонометрических неравенств можно использовать и графики функций, на которых строится вспомогательная линия аналогично показанному способу с использованием единичной окружности. Если вам интересно, попробуйте самостоятельно разобраться с таким подходом к решению. В дальнейшем будем использовать общие формулы для решения простейших тригонометрических неравенств.

Задача №10 . Решить неравенство .

Воспользуемся формулой общего решения с учетом того, что неравенство нестрогое:

Получаем в нашем случае:

Ответ.

Задача №11 . Решить неравенство .

Воспользуемся формулой общего решения для соответствующего строго неравенства:

Ответ..

Задача №12 . Решить неравенства: а) ; б) .

В указанных неравенствах не надо спешить использовать формулы общих решений или тригонометрическую окружность, достаточно просто вспомнить об области значений синуса и косинуса.

а) Поскольку , то неравенство не имеет смысла. Следовательно, решений нет.

б) Т. к. аналогично , то синус от любого аргумента всегда удовлетворяет указанному в условии неравенству . Следовательно неравенству удовлетворяют все действительные значения аргумента .

Ответ. а) решений нет; б) .

Задача 13 . Решить неравенство .

Это простейшее неравенство со сложным аргументом решается аналогично подобному уравнению. Сначала находим решение для всего указанного в скобках аргумента целиком, а потом преобразовываем его к виду «», работая с обоими концами промежутка, как с правой частью уравнения.