Определение теплопроводности твердых материалов методом плоского слоя. Методы определения теплопроводности металлов Измерение теплопроводности

Для исследования теплопроводности вещества используют две группы методов: стационарные и нестационарные.

Теория стационарных методов более проста и разработана более полно. Но нестационарные методы в принципе помимо коэффициента тепло­проводности позволяют получить информации о коэффициенте температуропроводности и теплоёмкости. Поэтому в последнее время большое внимание уделяется разработке нестационарных методов определения теплофизических свойств веществ.

Здесь рассматриваются некоторые стационарные методы определения коэффициента теплопроводности веществ.

а) Метод плоского слоя. При одномерном тепловом потоке через плоский слой коэффициент теплопроводности определяется по формуле

где d - толщина, T 1 и T 2 - температуры "горячей" и "холодной" поверхно­сти образца.

Для исследования теплопроводности этим методом необходимо создать близкий к одномерному тепловой поток.

Обычно температуры измеряют не на поверхности образца, а на неко­тором расстоянии от них (см. рис. 2.), поэтому необходимо в измеренную разность температур ввести поправки на перепад температуры в слое нагревателя и холодильника, свести к минимуму термическое сопротивление контактов.

При исследовании жидкостей для устранения явления конвекции градиент температур должен быть направлен вдоль поля гравитации (вниз).

Рис. 2. Схема методов плоского слоя для измерения теплопроводности.

1 – исследуемый образец; 2 – нагреватель; 3 – холодильник; 4, 5 – изоляционные кольца; 6 – охранные нагреватели; 7 – термопары; 8, 9 – дифференциальные термопары.

б) Метод Егера. Метод основан на решении одномерного уравнения тепло­проводности, описывавшего распространение теплоты вдоль стержня, нагреваемого электрическим током. Трудность использования этого метода состоит в невозможности создания строгих адиабатных условий на внешней поверхности образца, что нарушает одномерность теплового потока.

Расчётная формула имеет вид:

(14)

где s - электропроводность исследуемого образца, U – падение напряжения между крайними точками на концах стержня, DT – разность температур между серединой стержня и точкой на конце стержня.

Рис. 3. Схема метода Егера.

1 – электропечь; 2 – образец; 3 – цапфы крепления образца; Т 1 ¸ Т 6 – места заделки термопар.

Этот метод используют при исследовании электропроводных материалов.

в) Метод цилиндрического слоя. Исследуемая жидкость (сыпучий материал заполняет цилиндрический слой, образованный двумя расположенными коаксиально цилиндрами. Один из цилиндров, чаще всего внутренний, является нагревателем (рис.4).

Рис.4.Схема метода цилиндрического слоя

1 - внутренний цилиндр; 2 - основной нагреватель; 3 - слой исследуемого вещества; 4 – наружный цилиндр; 5 - термопары; 6 – охранные цилиндры; 7 - дополнительные нагреватели; 8 - корпус.

Рассмотрим подробнее стационарный процесс теплопроводности в цилиндрической стенке, температура наружной и внутренней поверхностей которой поддерживается постоянными и равными Т 1 и Т 2 (в нашем случае это слой исследуемого вещества 5). Определим тепловой поток через стенку при условии, что внутренний диаметр цилиндрической стенки d 1 = 2r 1 , а наружный d 2 = 2r 2 , l = const и теплота распространяется только в радиальном направлении.

Для решения задачи воспользуемся уравнением (12). В цилиндрических координатах, когда ; уравнение (12), согласно (1О), принимает вит:

. (15)

Введём обозначение dT /dr = 0, получим

После интегрирования и потенцирования этого выражения, переходя к первоначальным переменным получим:

. (16)

Как видно изэтого уравнения, зависимость T=f(r) носит логарифмический характер.

Постоянные интегрирования C 1 и C 2 можно, определить, если в это уравнение подставить граничные условия:

при r=r 1 Т = Т 1 и T 1 =C 1 lnr 1 +C 2 ,

при r=r 2 T=T 2 и T 2 =C 1 lnr 2 +C 2 .

Решение этих уравнений относительно С 1 и С 2 даёт:

;

Подставив эти выражения вместо С 1 и С 2 в уравнение (1б) , получим

(17)

тепловой поток через площадь цилиндрической поверхности радиуса r и длиной определяется с помощью закона Фурье (5)

.

После подстановки получим

. (18)

Коэффициент теплопроводности l при известных величинах Q , Т 1 , T 2 , d 1 , d 2 , рассчитывают по формуле

. (19)

Для подавления конвекции (в случав жидкости) цилиндрический слой должен иметь малую толщину, обычно доли миллиметра.

Уменьшение торцевых потерь в методе цилиндрического слоя достигается за счёт увеличения отношения /d и охранными нагревателями.

г) Метод нагретой проволоки. В этом методе отношение /d увеличивается за счёт уменьшения d . Внутренний цилиндр заменяется тонкой проволокой, являвшейся одновременно нагревателем и термометром сопротивления (рис.5). В результате относительной простоты конструкции и детальной разработки теории, метод нагретой проволоки стал одним из наиболее совершенных и точных. В практике экспериментальных исследований теплопроводности жидкостей игазов он занимает ведущее место.

Рис. 5. Схема измерительной ячейки, выполненной по методу нагретой проволоки. 1 – измерительная проволока, 2 – трубка, 3 – исследуемое вещество, 4 – токоподводы, 5 – потенциальные отводы, 6 – наружный термометр.

При условия, что весь тепловой поток от участка AВ распространяет­ся радиально и разность температур T 1 – T 2 не велика, так что в этих пределах можно считать l = const, коэффициент теплопроводности вещества определяется по формуле

, (20)

где Q AB = T×U AB – мощность, выделяемая на проволоке.

д) Метод шара. Находит применение в практике исследований теплопроводности жидкостей и сыпучих материалов. Исследуемому веществу придают форму сферического слоя, что позволяет, в принципе, исключать неконтролируемые потери теплоты. В техническом отношении этот метод достаточно сложен.

Какими бы ни были масштабы строительства, первым делом разрабатывается проект. В чертежах отражается не только геометрия строения, но и расчет главных теплотехнических характеристик. Для этого надо знать теплопроводность строительных материалов. Главная цель строительства заключается в сооружении долговечных сооружений, прочных конструкций, в которых комфортно без избыточных затрат на отопление. В связи с этим крайне важно знание коэффициентов теплопроводности материалов.

У кирпича лучшая теплопроводность

Характеристика показателя

Под термином теплопроводность понимается передача тепловой энергии от более нагретых предметов к менее нагретым. Обмен идет, пока не наступит температурного равновесия.

Теплопередача определяется отрезком времени, в течение которого температура в помещениях находится в соответствии с температурой окружающей среды. Чем меньше этот интервал, тем больше проводимость тепла стройматериала.

Для характеристики проводимости тепла используется понятие коэффициента теплопроводности, показывающего, сколько тепла за такое-то время проходит через такую-то площадь поверхности. Чем этот показатель выше, тем больше теплообмен, и постройка остывает гораздо быстрее. Таким образом, при возведении сооружений рекомендуется использовать стройматериалы с минимальной проводимостью тепла.

В этом видео вы узнаете о теплопроводности строительных материалов:

Как определить теплопотери

Главные элементы здания, через которые уходит тепло:

  • двери (5-20%);
  • пол (10-20%);
  • крыша (15-25%);
  • стены (15-35%);
  • окна (5-15%).

Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.

Значение проводимости тепла зависит от таких параметров:

  1. Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
  2. Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
  3. Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.

Коэффициент теплопроводности

В доме теплопотери неизбежны, а происходят они, когда за окном температура ниже, чем в помещениях. Интенсивность является переменной величиной и зависит от многих факторов, основные из которых следующие:

  1. Площадь поверхностей, участвующих в теплообмене.
  2. Показатель теплопроводности стройматериалов и элементов здания.
  3. Разница температур.

Для обозначения коэффициента теплопроводности стройматериалов используют греческую букву λ. Единица измерения – Вт/(м×°C). Расчет производится на 1 м² стены метровой толщины. Здесь принимается разница температур в 1°C.

Пример из практики

Условно материалы делятся на теплоизоляционные и конструкционные. Последние имеют наивысшую теплопроводность, из них строят стены, перекрытия, другие ограждения. По таблице материалов, при постройке стен из железобетона для обеспечения малого теплообмена с окружающей средой толщина их должна составлять примерно 6 м. Но тогда строение будет громоздким и дорогостоящим .

В случае неправильного расчета теплопроводности при проектировании жильцы будущего дома будут довольствоваться лишь 10% тепла от энергоносителей. Потому дома из стандартных стройматериалов рекомендуется утеплять дополнительно.

При выполнении правильной гидроизоляции утеплителя большая влажность не влияет на качество теплоизоляции, и сопротивление строения теплообмену станет гораздо более высоким.


Наиболее оптимальный вариант – использовать утеплитель

Наиболее распространенный вариант – сочетание несущей конструкции из высокопрочных материалов с дополнительной теплоизоляцией. Например:

  1. Каркасный дом. Утеплитель укладывается между стойками. Иногда при небольшом снижении теплообмена требуется дополнительное утепление снаружи главного каркаса.
  2. Сооружение из стандартных материалов. Когда стены кирпичные или шлакоблочные, утепление производится снаружи.

Стройматериалы для наружных стен

Стены сегодня возводятся из разных материалов, однако популярнейшими остаются: дерево, кирпич и строительные блоки. Главным образом отличаются плотность и проводимость тепла стройматериалов. Сравнительный анализ позволяет найти золотую середину в соотношении между этими параметрами. Чем плотность больше, тем больше несущая способность материала, а значит, всего сооружения. Но тепловое сопротивление становится меньше, то есть повышаются расходы на энергоносители. Обычно при меньшей плотности есть пористость.

Коэффициент теплопроводности и его плотность.

Утеплители для стен

Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.

Значение коэффициента λ приводится в следующей таблице.

Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.

Теплопроводность — важнейшая теплофизическая характеристика материалов. Её необходимо учитывать при конструировании нагревательных устройств, выборе толщины защитных покрытий, учёте тепловых потерь. Если под рукой или в наличии нет соответствующего справочника, а состав материала точно не известен, его теплопроводность необходимо вычислить или измерить экспериментально.

Составляющие теплопроводности материалов

Теплопроводность характеризует процесс теплопереноса в однородном теле с определёнными габаритными размерами. Поэтому исходными параметрами для измерения служат:

  1. Площадь в направлении, перпендикулярном направлению теплового потока.
  2. Время, в течение которого происходит перенос тепловой энергии.
  3. Температурный перепад между отдельными, наиболее удалёнными друг от друга частями детали или исследуемого образца.
  4. Мощность теплового источника.

Для соблюдения максимальной точности результатов требуется создать стационарные (установившиеся во времени) условия теплопередачи. В этом случае фактором времени можно пренебречь.

Определить теплопроводность можно двумя способами — абсолютным и относительным.

Абсолютный метод оценки теплопроводности

В данном случае определяется непосредственное значение теплового потока, который направляется на исследуемый образец. Чаще всего образец принимается стержневым или пластинчатым, хотя в некоторых случаях (например, при определении теплопроводности коаксиально размещённых элементов) он может иметь вид полого цилиндра. Недостаток пластинчатых образцов — необходимость в строгой плоскопараллельности противоположных поверхностей.

Поэтому для металлов, характеризующихся высокой теплопроводностью, чаще принимают образец в форме стержня.

Суть замеров состоит в следующем. На противоположных поверхностях поддерживаются постоянные температуры, возникающие от источника тепла, который расположен строго перпендикулярно к одной из поверхностей образца.

В этом случае искомый параметр теплопроводности λ составит
λ=(Q*d)/F(T2-T1), Вт/м∙К, где:
Q — мощность теплового потока;
d — толщина образца;
F — площадь образца, на которую воздействует тепловой поток;
Т1 и Т2 — температуры на поверхностях образца.

Поскольку мощность теплового потока для электронагревателей может быть выражена через их мощность UI, а для измерения температуры могут быть использованы подключённые к образцу термодатчики, то вычислить показатель теплопроводности λ не составит особых трудностей.

Для того, чтобы исключить непроизводительные потери тепла, и повысить точность метода, узел образца и нагревателя следует поместить в эффективный теплоизолирующий объём, например, в сосуд Дьюара.

Относительный метод определения теплопроводности

Исключить из рассмотрения фактор мощности теплового потока можно, если использовать один из способов сравнительной оценки. С этой целью между стержнем, теплопроводность которого требуется определить, и источником тепла помещают эталонный образец, теплопроводность материала которого λ 3 известна. Для исключения погрешностей измерения образцы плотно прижимаются друг к другу. Противоположный конец измеряемого образца погружается в охлаждающую ванну, после чего к обоим стержням подключаются по две термопары.

Теплопроводность вычисляется из выражения
λ=λ 3 (d(T1 3 -T2 3)/d 3 (T1-T2)), где:
d — расстояние между термопарами в исследуемом образце;
d 3 — расстояние между термопарами в образце-эталоне;
T1 3 и T2 3 — показания термопар, установленных в образце-эталоне;
Т1 и Т2 — показания термопар, установленных в исследуемом образце.

Теплопроводность можно определить и по известной электропроводности γ материала образца. Для этого в качестве испытуемого образца принимают проводник из проволоки, на концах которого любым способом поддерживается постоянная температура. Через проводник пропускается постоянный электрический ток силой I, причём клеммный контакт должен приближаться к идеальному.

По достижении стационарного теплового состояния температурный максимум T max будет располагаться посредине образца, с минимальными значениями Т1 и Т2 на его торцах. Измерив разность потенциалов U между крайними точками образца, значение теплопроводности можно установить из зависимости

Точность оценки теплопроводности возрастает с возрастанием длины испытуемого образца, а также с увеличением силы тока, который пропускается через него.

Относительные методы измерения теплопроводности точнее абсолютных, и более удобны в практическом применении, однако требуют существенных затрат времени на выполнение замеров. Это связано с длительностью установления стационарного теплового состояния в образце, теплопроводность которого определяется.

В процессе их теплового движения. В жидкостях и твердых телах- диэлектриках - перенос теплоты осуществляется путем непосредственной передачи теплового движения молекул и атомов соседним частицам вещества. В газообразных телах распространение теплоты теплопроводностью происходит вследствие обмена энергией при соударении молекул, имеющих различную скорость теплового движения. В металлах теплопроводность осуществляется главным образом вследствие движения свободных электронов.

В основной зеком теплопроводности входит ряд математических понятий, оп-ределения которых, целесообразно напомнить и пояснить.

Температурное поле — это со-вокупности значений температуры во всех точках тела в данный момент време-ни. Математически оно описывается ввиде t = f (x, y, z, τ ). Различают стационарное температурное поле, когда температура во всех точках тела не зависит от времени (не изменяется с течением времени), и нестационарное температурное поле . Кроме то-го, если температура изменяется только по одной или двум пространственным координатам, то температурное поле на-зывают соответственно одно- или двух - мерным.

Изотермическая поверхность - это геометрическое место точек, температура в которых одинакова.

Градиент температуры grad t есть вектор, направленный по нор-мали к изотермической поверхности и численно равный производной от тем-пературы по этому направлению.

Согласно основному закону тепло-проводности — закону Фурье (1822 г.), вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален градиенту температуры:

q = - λ grad t , (3)

где λ — коэффициент теплопро-водности вещества; его единица измерения Вт /(м·К ).

Знак минус в уравнении (3) ука-зывает на то, что вектор q направлен противоположно вектору grad t , т.е. в сторону наибольшего уменьшения температуры.

Тепловой поток δQ через произволь-но ориентированную элементарную пло-щадку dF равен скалярному произведе-нию вектора q на вектор элементарной площадки dF , а полный тепловой поток Q через всю поверхность F определяется интегрированием этого произведения по поверхности F:

КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ

Коэффициент теплопроводности λ в законе Фурье (3) характеризует спо-собность данного вещества проводить теплоту. Значения коэффициентов тепло-проводности приводятся в справочниках по теплофизическим свойствам веществ. Численно коэффициент теплопроводности λ = q/ grad t равен плотности теплового потока q при градиенте температуры grad t = 1 К/м . Наиболь-шей теплопроводностью обладает легкий газ — водород. При комнатных условиях коэффициент теплопроводности водорода λ = 0,2 Вт /(м·К ). У более тяжелых газов теплопроводность меньше — у воз-духа λ = 0,025 Вт /(м·К ), у диоксида уг-лерода λ = 0,02 Вт /(м·К ).


Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь: λ = 400 Вт /(м·К ). Для углеродистых сталей λ = 50 Вт /(м·К ). У жидкостей коэффициент теплопроводности, как правило, меньше 1 Вт /(м·К ). Вода является одним из лучших жидких проводников теплоты, для нее λ = 0,6 Вт /(м·К ).

Коэффициент теплопроводности неметаллических твердых материалов обычно ниже 10 Вт /(м·К ).

Пористые материалы - пробка, различные волокнистые наполнители типа органической ваты - обладают наименьшими коэффициентами теплопроводности λ <0,25 Вт /(м·К ), приближающимся при малой плотности набивки к коэффициенту теплопроводности воздуха, наполняющего поры.

Значительное влияние на коэффициент теплопроводности могут оказывать температура, давление, а у пористых материалов ещё и влажность. В справочниках всегда приводятся условия, при которых определялся коэффициент теплопроводности данного вещества, и для других условий эти данныеиспользовать нельзя. Диапазоны значений λ для различных материалов приведены на рис. 1.

Рис.1. Интервалы значений коэффициентов теплопроводности различных веществ.

Перенос теплоты теплопроводностью

Однородная плоская стенка .

Про-стейшей и очень распространенной за-дачей, решаемой теорией теплообмена, является определение плотности тепло-вого потока, передаваемого через плоскую стенку толщиной δ , на повер-хностях которой поддерживаются темпе-ратуры t w1 и t w2 . (рис.2). Температура изменяется только по толщине пластины - по одной координате х. Такие за-дачи называются одномерными, решения их наиболее просты, и в данном курсе мы ограничимся рассмотрением только од-номерных задач.

Учитывая, что для од-номерного случая :

grad t = dt/dх , (5)

и используя основной закон теплопроводности (2), получаем дифференци-альное уравнение стационарной тепло-проводности для плоской стенки:

В стационарных условиях, когда энергия не расходуется на нагрев, плот-ность теплового потока q неизменна по толщине стенки. В большинстве практи-ческих задач приближенно пред-полагается, что коэффициент тепло-проводности λ не зависит от температуры и одинаков по всей толщине стенки. Зна-чение λ находят в справочниках при температуре:

средней между температурами поверхно-стей стенки. (Погрешность расчетов при этом обычно меньше погрешности исход-ных данных и табличных величин, а при линейной зависимости коэффициента теплопроводности от температуры: λ = а+ bt точная расчетная формула для q не отличается от приближенной). При λ = const :

(7)

т.е. зависимость температуры t от координаты х линейна (рис. 2).

Рис.2. Стационарное распределение темпе-ратуры по толщине плоской стенки.

Разделив переменные в уравнении (7) и проинтегрировав по t от t w1 до t w2 и по х от 0 до δ :

, (8)

получим зависимость для расчета плот-ности теплового потока:

, (9)

или мощность теплового потока (тепловой поток):

(10)

Следовательно, количество теплоты, переданной через 1 м 2 стенки, прямо пропорционально коэффициенту теплопроводности λ и разности температур наружных поверхностей стенки (t w1 - t w2 ) и обратно пропорционально толщине стенки δ . Общее количество теплоты через стенку площадью F еще и пропорционально этой площади.

Полученная простейшая формула (10) имеет очень широкое распространение в тепло-вых расчетах. По этой формуле не только рассчитывают плотности теплового потока через плоские стенки, но и делают оценки для случаев более сложных, уп-рощенно заменяя в расчетах стенки сложной конфигурации на плоскую стенку. Иногда уже на основании оценки тот или иной вариант отвергается без дальней-ших затрат времени на его детальную проработку.

Температура тела в точке х определяется по формуле:

t x = t w1 - (t w1 - t w2) × (x × d)

Отношение λF/δ называется тепло-вой проводимостью стенки, а обратная величина δ/λF тепловым или термическим сопротивлением стенки и обозначается R λ . Пользуясь понятием термического сопро-тивления, формулу для расчета теплово-го потока можно представить в виде:

Зависимость (11) аналогична закону Ома в электротехни-ке (сила электрического тока равна раз-ности потенциалов, деленной на электри-ческое сопротивление проводника, по ко-торому течет ток).

Очень часто термическим сопротив-лением называют величину δ/λ, которая равна термическому сопротивлению плоской стенки площадью 1 м 2 .

Примеры расчетов .

Пример 1 . Определить тепловой поток через бетонную стену здания толщиной 200 мм , высотой H = 2,5 м и длиной 2 м , если температуры на ее поверхностях: t с1 = 20 0 С, t с2 = - 10 0 С, а коэффициент теплопроводно-сти λ =1 Вт /(м·К ):

= 750 Вт .

Пример 2 . Определить коэффициент теплопроводности материала стенки толщиной 50 мм , если плотность теплового потока через нее q = 100 Вт /м 2 , а разность температур на поверхностях Δt = 20 0 С.

Вт /(м·К ).

Многослойная стенка .

Формулой (10) можно воспользоваться и для расчета теплового потока через стенку, состоя-щую из нескольких (n ) плотно прилегающих друг к другу слоев разнородных материа-лов (рис. 3), например, головку цилиндров, прокладку и блока цилиндров, выполненных из разных материалов, и т д.

Рис.3. Распределение температуры по толщине многослойной плоской стенки.

Термическое сопротивление такой стенки равно сумме термических сопротивлений отдельных слоев:

(12)

В формулу (12) нужно подставить разность температур в тех точках (по-верхностях), между которыми «включе-ны» все суммируемые термические сопротивления, т.е. в данном случае: t w1 и t w(n+1) :

, (13)

где i - номер слоя.

При стационарном режиме удельный тепловой поток через многослойную стенку постоянен и для всех слоев одинаков. Из (13) следует:

. (14)

Из уравнения (14) следует, что общее термическое сопротивление многослойной стенки равно сумме сопротивлений каждого слоя.

Формулу (13) легко получить, записав разность температур по формуле (10) для каждого из п слоев многослой-ной стенки и сложив все п выражений с учетом того, что во всех слоях Q имеет одно и то же значение. При сложении все промежуточные температуры сократятся.

Распределение температуры в преде-лах каждого слоя — линейное, однако, в различных слоях крутизна температур-ной зависимости различна, поскольку со-гласно формуле (7) (dt/dx ) i = - q/λ i . Плотность теплового потока, проходяще-го через все слон, в стационарном режи-ме одинакова, а коэффициент теплопро-водности слоев различен, следовательно, более резко температура меняется в сло-ях с меньшей теплопроводностью. Так, в примере на рис.4 наименьшей тепло-проводностью обладает материал второ-го слоя (например, прокладки), а наибольшей — третьего слоя.

Рассчитав тепловой поток через мно-гослойную стенку, можно определить па-дение температуры в каждом слое по соотношению (10) и найти температу-ры на границах всех слоев. Это очень важно при использовании в качестве теплоизоляторов материалов с ограничен-ной допустимой температурой.

Температура слоев определяется по следующей формуле:

t сл1 = t c т1 - q × (d 1 × l 1 -1)

t сл2 = t c л1 - q × (d 2 × l 2 -1)

Контактное термическое сопротивле-ние . При выводе формул для многослойной стенки предполагалось, что слои плотно прилегают друг к другу, и благодаря хорошему контакту соприкасающиеся поверхности разных слоев имеют одну и ту же температуру. Идеально плотный контакт между отдельными слоями многослойной стенки получается, если одни из слоев наносят на другой слой в жидком состоянии или в виде текучего раствора. Твердые тела касаются друг друга только вершинами профилей шеро-ховатостей (рис.4).

Площадь контакта вершин пренебрежимо мала, и весь тепловой по-ток идет через воздушный зазор (h ). Это создает дополнительное (контактное) термическое сопротивление R к . Термические контактные сопротивления, могут быть определены самостоятельно с использованием соответствующих эмпирических зависимостей или экспериментально. Например, термическое сопротивление зазора в 0,03 мм примерно эквивалентно термическому сопро-тивлению слоя стали толщиной около 30 мм .

Рис.4. Изображение контактов двух шерохо-ватых поверхностей.

Методы снижения термического контактного сопротивления. Полное термическое сопротивление контакта определяется чистотой обработки, нагрузкой, теплопроводностью среды, коэффициентами теплопроводности материалов контактирующих деталей и другими факторами.

Наибольшую эффективность снижения термического сопротивления дает введение в контактную зону среды с теплопроводностью, близкой к теплопроводности металла.

Существуют следующие возможности заполнения контактной зоны веществами:

Использование прокладок из мягких металлов;

Введение в контактную зону порошкообразного вещества с хорошей тепловой проводимостью;

Введение в зону вязкого вещества с хорошей тепловой проводимостью;

Заполнение пространства между выступами шероховатостей жидким металлом.

Наилучшие результаты получены при заполнении контактной зоны расплавленным оловом. В этом случае термическое сопротивление контакта практически становится равным нулю.

Цилиндрическая стенка .

Очень часто теплоносители движутся по трубам (цилиндрам), и требуется рассчитать тепловой поток, передаваемый через цилиндрическую стенку трубы (цилиндра). Задача о передаче теплоты через цилиндрическую стенку (при известных и постоянных значениях температуры на внутренней и наружной поверхностях) также является одномерной, если ее рассматри-вать в цилиндрических координатах (рис.4).

Температура изменяется только вдоль радиуса, а по длине трубы l и по ее периметру остается неизменной.

В этом случае уравнение теплового потока имеет вид:

. (15)

Зависимость (15) показывает, что количество теплоты, переданной через стенку цилиндра, прямо пропорционально коэффициенту теплопроводности λ , длине трубы l и температурному напору (t w1 - t w2 ) и обратно пропорционально натуральному логарифму отношения внешнего диаметра цилиндра d 2 к его внутреннему диаметру d 1 .

Рис. 4. Изменение температуры по толщине однослойной цилиндрической стенки.

При λ = const распределение темпера-туры порадиусу r однослойной цилиндрической стенки подчиняется ло-гарифмическому закону (рис. 4).

Пример . Во сколько раз уменьшаются тепловые потери через стенку здания, если между двумя слоями кирпичей толщиной по 250 мм установить прокладку пенопласта толщиной 50 мм . Коэффициенты теплопроводности соответственно равны: λ кирп . = 0,5 Вт /(м·К ); λ пен. . = 0,05 Вт /(м·К ).

В соответствии с требованиями федерального закона № 261-ФЗ «Об энергосбережении» требования к теплопроводности строительных и теплоизоляционных материалов в России были ужесточены. Сегодня измерение теплопроводности является одним из обязательных пунктов при принятии решения об использовании материала в качестве теплоизолятора.

Для чего необходимо измерение теплопроводности в строительстве?

Контроль теплопроводности строительных и теплоизоляционных материалов проводится на всех стадиях их сертификации и производства в лабораторных условиях, когда материалы подвергают воздействию различных факторов, влияющих на его эксплуатационные свойства. Есть несколько распространённых методов измерения теплопроводности . Для точных лабораторных испытаний материалов низкой теплопроводности (ниже 0,04 – 0,05 Вт/м*К) рекомендуют использовать приборы, использующие метод стационарного теплового потока. Их применение регламентировано ГОСТ 7076.

Компания «Интерприбор» предлагает измеритель теплопроводности, цена которого выгодно отличается от имеющихся на рынке и отвечает всем современным требованиям. Он предназначен для лабораторного контроля качества строительных и теплоизоляционных материалов.

Преимущества измерителя теплопроводности ИТС-1

Измеритель теплопроводности ИТС-1 имеет оригинальное моноблочное исполнение и характеризуется следующими преимуществами:

  • автоматический цикл измерений;
  • высокоточный измерительный тракт, позволяющий стабилизировать температуры холодильника и нагревателя;
  • возможность градуировки прибора под отдельные виды исследуемых материалов, что дополнительно повышает точность результатов;
  • экспресс-оценка результата в процессе выполнения измерений;
  • оптимизированная «горячая» охранная зона;
  • информативный графический дисплей, упрощающий контроль и анализ результатов измерений.

ИТС-1 поставляется в единственной базовой модификации, которая по желанию клиента может быть дополнена контрольными образцами (оргстекло и пеноплекс), коробом для сыпучих материалов и защитным кофром для хранения и транспортировки прибора.