Аспирационные системы для раннего обнаружения возгораний в цодах. Раннее обнаружение пожаров Извещатели, или датчики, могут быть различных типов

В Российской Федерации ежедневно происходит около 700 пожаров, на которых погибает более 50 человек. Поэтому сохранение жизни людей остается одной из важнейших задач всех систем безопасности. В последнее время все больше обсуждается тема раннего обнаружения пожара.

Разработчики современной противопожарной техники соревнуются в повышении чувствительности пожарных извещателей к основным признакам пожара: теплу, оптическому излучению от пламени и концентрации дыма. В этом направлении проводится огромная работа, но все пожарные извещатели срабатывают, когда хотя бы небольшой пожар уже возник. И мало кто обсуждает тему обнаружения возможных признаков пожара. Однако приборы, которые могут регистрировать не пожар, а лишь угрозу или вероятность появления пожара, уже разработаны. Это – газовые пожарные извещатели.

Сравнительный анализ

Известно, что пожар может возникнуть как от внезапной аварийной ситуации (взрыв, короткое замыкание), так и при постепенном накоплении опасных факторов: скоплении горючих газов, паров, перегрева вещества выше точки воспламенения, тления изоляции проводов электрокабелей от перегрузки, гниения и разогрева зерна и т.п.

На рис. 1 представлен график типичной реакции газового пожарного извещателя на пожар, начинающийся с горящей сигареты, упавшей на матрас. Из графика видно, что газовый извещатель реагирует на монооксид углерода через 60 мин. после попадания горящей сигареты на матрас, в этом же случае фотоэлектрический дымовой извещатель реагирует через 190 мин., ионизационный дымовой – через 210 мин., что значительно увеличивает время для принятия решения об эвакуации людей и ликвидации очага пожара.

Если фиксировать комплекс параметров, который может привести к началу пожара, то можно (не дожидаясь появления пламени, дыма) изменить обстановку и избежать пожара (аварии). При раннем получении сигнала от газового пожарного извещателя обслуживающий персонал успеет предпринять меры к ослаблению или устранению фактора угрозы. Например, это может быть проветривание помещения от горючих паров и газов, при перегреве изоляции – выключение питания кабеля и переход на использование резервной линии, при коротком замыкании на электронной плате вычислительных и управляемых машин – тушение локального пожара и удаление неисправного блока. Таким образом, именно человек принимает окончательное решение: вызывать пожарную охрану или устранять аварию своими силами.

Виды газовых извещателей

Все газовые пожарные извещатели различаются по типу сенсора:
- металлооксидные,
- термохимические,
- полупроводниковые.

Металлооксидные сенсоры

Изготавливаются металлооксидные сенсоры на основе толстопленочной микроэлектронной технологии. В качестве подложки используется поликристаллическая окись алюминия, на которую с двух сторон наносятся нагреватель и металлооксидный газочувствительный слой (рис. 2). Чувствительный элемент помещен в корпус, защищенный проницаемой для газа оболочкой, удовлетворяющей всем требованиям взрывопожаробезопасности.



Металлооксидные сенсоры предназначены для определения концентраций горючих газов (метан, пропан, бутан, водород и т.д.) в воздухе в интервале концентраций от тысячных до единиц процентов и токсичных газов (СО, арсин, фосфин, сероводород и т.д.) на уровне предельно допустимых концентраций, а также для одновременного и селективного определения концентраций кислорода и водорода в инертных газах, например в ракетной технике. Кроме того, они имеют рекордно низкую для своего класса электрическую мощность, необходимую для нагрева (менее 150 мВт), и могут применяться в сигнализаторах утечки газов и системах противопожарной сигнализации как стационарных, так и носимых.

Термохимические газосигнализаторы

Среди методов, применяемых для определения концентрации в атмосферном воздухе горючих газов или паров горючих жидкостей, используется термохимический метод. Его сущность заключается в измерении теплового эффекта (дополнительного повышения температуры) от реакции окисления горючих газов и паров на каталитически активном элементе датчика и дальнейшем преобразовании полученного сигнала. Датчик сигнализатора, используя этот тепловой эффект, формирует электрический сигнал, пропорциональный концентрации горючих газов и паров с различными коэффициентами пропорциональности для различных веществ.

При горении различных газов и паров термохимический датчик выдает сигналы, разные по величине. Одинаковым уровням (в % НКПР) различных газов и паров в воздушных смесях соответствуют неравные выходные сигналы датчика.

Термохимический датчик не избирателен. Его сигнал характеризует уровень взрывоопасности, определяемый суммарным содержанием горючих газов и паров в воздушной смеси.

В случае контроля совокупности компонентов, в которой содержание отдельных, заранее известных горючих компонентов колеблется от нуля до какой-то концентрации может привести к погрешности контроля. Такая погрешность существует и при нормальных условиях. Этот фактор необходимо учитывать для задания границ диапазона сигнальных концентраций и допуском на их изменение – пределом допускаемой основной абсолютной погрешности срабатывания. Пределы измерения сигнализатора – это наименьшее и наибольшее значение концентрации определяемого компонента, в рамках которых сигнализатор осуществляет измерение с погрешностью, не превышающей заданную.

Описание измерительной схемы

Измерительная схема термохимического преобразователя представляет собой мостовую схему (см. рис. 2). Чувствительный В1 и компенсирующий В2 элементы, расположенные в датчике, включены в мостовую схему. Вторая ветвь моста – резисторы R3–R5 находятся в блоке сигнализации соответствующего канала. Мост балансируется резистором R5.

При каталитическом горении воздушной смеси горючих газов и паров на чувствительном элементе В1 происходит выделение тепла, увеличение температуры и, следовательно, увеличение сопротивления чувствительного элемента. На компенсирующем элементе В2 горения не происходит. Сопротивление компенсирующего элемента изменяется при его старении, изменении тока питания, температуры, скорости движения контролируемой смеси и т.п. Эти же факторы действуют и на чувствительный элемент, что значительно уменьшает вызванный ими разбаланс моста (дрейф нуля) и погрешность контроля.

При стабильном питании моста, стабильной температуре и скорости контролируемой смеси разбаланс моста со значительной степенью точности является результатом изменения сопротивления чувствительного элемента.

В каждом канале устройство питания моста датчика обеспечивает регулированием тока постоянную оптимальную температуру элементов. В качестве датчика температуры, как правило, используется сам же чувствительный элемент В1. Сигнал разбаланса моста снимается с диагонали моста ab.

Полупроводниковые газовые сенсоры

Принцип действия полупроводниковых газовых сенсоров основан на изменении электропроводности полупроводникового газочувствительного слоя при химической адсорбции газов на его поверхности. Этот принцип позволяет эффективно использовать их в приборах пожарной сигнализации как альтернативные устройства традиционным оптическим, тепловым и дымовым сигнализаторам (извещателям), в том числе содержащим радиоактивный плутоний. А высокую чувствительность (для водорода от 0,00001% объемного), селективность, быстродействие и дешевизну полупроводниковых газовых сенсоров следует рассматривать как основное их преимущество перед другими типами пожарных извещателей. Используемые в них физико-химические принципы детектирования сигналов сочетаются с современными микроэлектронными технологиями, что обуславливает низкую стоимость изделий при массовом производстве и высокие технические характеристики.

Полупроводниковые газочувствительные сенсоры – это высокотехнологичные элементы с низким энергопотреблением (от 20 до 200 мВт), высокой чувствительностью и увеличенным быстродействием до долей секунд. Металлооксидные и термохимические сенсоры являются слишком дорогостоящими для такого использования. Внедрение в производство газовых пожарных извещателей на основе полупроводниковых химических сенсоров, изготавливаемых по групповой технологии, позволяет намного снизить стоимость газовых извещателей, что немаловажно для массового применения.

Нормативные требования

Нормативные документы на газовые пожарные извещатели еще не разработаны в полной мере. Имеющиеся ведомственные требования РД БТ 39-0147171-003-88 распространяются на объекты нефтяной и газовой промышленности. В НПБ 88-01 по размещению газовых пожарных извещателей сказано, что их следует устанавливать в помещениях на потолке, стенах и других строительных конструкциях зданий и сооружений в соответствии с инструкцией по эксплуатации и рекомендациями специализированных организаций.

Однако в любом случае, для того чтобы точно рассчитать количество газовых извещателей и правильно произвести их установку на объекте, предварительно необходимо знать:
- параметр, по которому контролируется безопасность (тип газа, который выделяется и свидетельствует об опасности, например CO, CH4, H2 и т.д.);
- объем помещения;
- назначение помещения;
- наличие систем вентиляции, подпора воздуха и т.д.

Резюме

Газовые пожарные извещатели – это приборы следующего поколения, и поэтому они еще требуют от отечественных и зарубежных компаний, занимающихся противопожарными системами, новых научно-исследовательских изысканий по разработке теории газовыделения и распространения газов в помещениях разных по назначению и эксплуатации, а также проведению практических экспериментов для разработки рекомендаций по рациональному размещению таких извещателей.

УДК 614.842.4

СОВРЕМЕННЫЕ СИСТЕМЫ РАННЕГО ОБНАРУЖЕНИЯ ПОЖАРА

М. В. Савин, В. Л. Здор

Всероссийский научно-исследовательский институт противопожарной обороны МЧС России

Дается краткая характеристика различных типов пожарных извещателей, их положительных качеств и недостатков. Подробно рассматриваются устройство и преимущества аспи-рационных пожарных извещателей.

Одним из самых важных элементов системы пожарной сигнализации являются пожарные из-вещатели. Они подразделяются в зависимости от того типа физического фактора пожара, на который реагируют, и, соответственно, классифицируются на тепловые, дымовые, газовые, извещатели пламени, комбинированные. Кроме того, в зависимости от конфигурации измерительной зоны различают пожарные извещатели точечные, многоточечные и линейные. Точечный пожарный извещатель реагирует на фактор пожара, контролируемый вблизи его компактного чувствительного элемента. Многоточечный пожарный извещатель характеризует дискретное расположение точечных чувствительных элементов в измерительной линии. Линейный пожарный извещатель-это извещатель, геометрическая форма зоны контроля которого имеет протяженный участок, то есть контроль окружающей среды проводится на протяжении некоторой линии. У каждого типа пожарных извещателей есть свои преимущества и недостатки. Совокупность этих свойств и определяет область их применения. Но все же для всех этих извещателей характерен один общий недостаток - это так называемое "пассивное" сканирование защищаемой площади. Ведь они фактически ждут, пока факторы, сопровождающие пожар (дым, повышенная температура), сами окажутся в поле обнаружения извещателя. В частности, дымовой пожарный извещатель только тогда выдаст тревожное извещение, когда дым попадет в камеру извещателя, что существенно зависит от наличия воздушных потоков в защищаемом помещении.

В настоящее время на нашем рынке стали активно внедряться аспирационные пожарные извещате-ли. Они представляют собой собственно извеща-тель, состоящий из чувствительного элемента и схемы обработки сигналов, который может быть расположен как внутри, так и вне защищаемого помещения, и систему заборных трубопроводов, по которым транспортируются пробы воздуха из за-

щищаемого помещения к чувствительному элементу аспирационного пожарного извещателя.

Аспирационные пожарные извещатели имеют несколько основных преимуществ перед традиционными системами обнаружения дыма. В первую очередь, обеспечение доставки проб воздуха к чувствительному элементу независимо от наличия принудительных и естественных воздушных потоков в защищаемом помещении.

Аспирационные пожарные извещатели обеспечивают так называемое кумулятивное обнаружение. Когда дым распространяется и рассеивается по всему помещению, его концентрация уменьшается и становится все труднее обнаружить его традиционными средствами. Кумулятивное обнаружение относится к способности забирать воздух из многих точек в пределах защищаемой зоны в один изве-щатель. Аспирационные пожарные извещатели непрерывно отбирают небольшие количества проб воздуха по всей защищаемой зоне и переносят их к чувствительному элементу аспирационного пожарного извещателя.

Одной из сервисных функций современных ас-пирационных пожарных извещателей является способность непрерывно следить за общим фоном запыленности воздуха, прогнозируя и подстраивая свою работу в соответствии с реалиями защищаемого объекта. Это еще одно из возможных применений данного изделия - мониторинг чистоты воздуха в помещении. Кроме этого, большинство извещателей постоянно анализируют возможные неисправности в своей работе (загрязнение в трубках, засорение дымовсасывающих отверстий и т.д.).

По существу аспирационные пожарные извеща-тели - это интеллектуальные пожарные микростанции. Они так же, как и обычные системы пожарной сигнализации, имеют в своем составе стационарное и периферийное оборудование. В качестве периферийного оборудования выступают как система заборных трубопроводов с дымовсасы-вающими капиллярными трубками, так и различ-

ПОЖАРОВЗРЫВОБЕЗОПАСНОСТЬ 6"2003

ные модули (рис. 1), предназначенные для выполнения таких функций, как обеспечение визуальной индикации состояния аспирационного извещателя в отдельных зонах, настройка, проверка и сервисное обслуживание, а также программирование какого-либо отдельного извещателя и всей сети в целом.

В качестве чувствительного элемента аспира-ционных пожарных извещателей могут использоваться как обычные пожарные извещатели (дымовые или газовые) (рис. 2), так и интеллектуальные системы обнаружения дыма по методу сканирующей лазерной технологии (рис. 3).

Разберем принцип действия аспирационных пожарных извещателей на примере извещателей серии VESDA фирмы "Vision Fire & Security". Воздух из защищаемого помещения непрерывно всасывается в извещатель при помощи высокоэффективного вентилятора (аспиратора) через систему заборных трубопроводов (рис. 4). Проба этого воздуха пропускается через фильтры. Сначала удаляется пыль и загрязнение до того, как проба поступает в оптическую камеру обнаружения дыма. Затем, на второй ступени очистки (если она имеется), обеспечивается дополнительная подача порции чистого

воздуха для предотвращения загрязнения оптических поверхностей и обеспечения стабильности калибровки и длительного срока службы аспирационного извещателя. После фильтра проба воздуха поступает в измерительную камеру, в которой происходит распознавание наличия дыма. Затем сигнал обрабатывается и индицируется посредством линейного шкального индикатора, пороговых индикаторов сигнала тревоги или графического дисплея (в зависимости от модификации извещателя). Далее аспирационные извещатели через реле или интерфейс могут передавать эту информацию на приборы приемно-контрольный пожарный, пожарный управления, на пульт централизованного наблюдения или другие внешние устройства.

Возникающие загорания проходят обычно четыре стадии: тление, видимый дым, пламя и пожар. На рис. 5 показано, как протекает развитие загорания во времени. Обратите внимание на то, что продолжительность первой стадии - тления - обеспечивает больше времени для обнаружения потенциального пожара и, соответственно, борьбы с его распространением, прежде чем он причинит значительный ущерб и разрушения. Традиционные дымовые пожарные извещатели зачастую обнаруживают дым, когда пожар уже начался, что приводит к

t-я стадия: 2-я стадия:

Тлеющий пожар Видимый

1 Традиционные

3-я стадия Пламя

4-я стадия! Пожар I

VESDA Пожар 2 (Включается система пожаротушения)

значительному материальному ущербу. Ряд аспира-ционных пожарных извещателей благодаря своим особенностям позволяет обнаружить пожар на стадии тления и распознать процесс его распространения.

Область применения аспирационных пожарных извещателей достаточно широка:

На складах;

В универсамах широкого профиля, которые содержат различные объемы товарно-материальных запасов: от сырьевых производственных материалов и оптовых товаров до розничных предметов потребления и готовой продукции;

В узлах электронной обработки данных, таких как центры обработки данных Internet, управления сетью и подобные системы, которые представляют значительную опасность пожара из-за их большой потребности в электроэнергии и плотности электронных схем;

На участках с чистыми производственными помещениями, например такими, как установки по производству полупроводников, научно-исследовательские и опытно-конструкторские организации, фармацевтические производственные мощности, представляющие значительную опасность пожара из-за постоянного снабжения воспламеняющимися материалами;

В энергетической промышленности, которая использует для выработки электроэнергии различные типы топлива.

Аспирационные пожарные извещатели с системой фильтрации воздуха имеют низкую вероят-

ность подачи ложных сигналов тревоги, что позволяет уменьшить значительный материальный ущерб, который мог бы возникнуть при ложном пуске систем пожаротушения, остановке технологического процесса и т.п.

В то же время аспирационные пожарные извещатели можно использовать в зданиях и помещениях с повышенными требованиями к эстетике - это современные офисы, зрительные, репетиционные, лекционные, читальные и конференц-залы, комнаты заседаний, кулуарные, фойе, холлы, коридоры, гардеробные, а также исторические здания, соборы, музеи, выставки, галереи искусств, книгохранилища, архивы.

Аспирационные пожарные извещатели возможно использовать:

В экстремальных условиях: при низких температурах, механических перегрузках и жестких условиях эксплуатации, так как система заборного трубопровода и непосредственно чувствительный элемент извещателя могут быть установлены в разных помещениях;

Они могут работать как самостоятельно в качестве индивидуальных средств, так и в составе автоматических систем сбора и обработки информации об обстановке и передачи сигналов на внешние устройства различным способом (по проводам, радиоканалу и др.);

В качестве эффективных средств формирования стартового сигнала для запуска систем пожаротушения благодаря наличию нескольких уровней сигналов тревоги и настраиваемому диапазону чувствительности. При этом для осуществления алгоритма пуска средств пожаротушения предполагается наличие двух отдельных точек детектирования, которые необходимы для срабатывания системы, то есть наличие двух отдельных аспирационных пожарных извещателей. Таким образом, дымовые пожарные извещатели

аспирационного типа являются серьезным дополнением в комплексе мер по обеспечению безопасности помещений наряду с традиционными пожарными извещателями, ни в коем случае не уменьшая значимости и возможностей последних.

ПOЖAPOBЗPЫBOБEЗOПACHOCTЬ 6"2003

Компания-производитель "Vision Fire & Security" "Securiton-Hekatron" "ESSER"

Характеристика Наименование аспирационного пожарного извещателя

VESDA Laser VESDA Laser PLUS SCANNER VESDA Laser COMPACT RAS ASD 515-1 RAS ASD XL ARS 70 LRS-S 700

Питание, В 18...30 18.30 18.30 20.28 18.38 24.30 18.30

Температура эксплуатации, °С -20...+60 -20...+60 -20...+60 0...+60 0...+52 0...+50 -10.+60

Чувствительность, % 0,005.20 0,005.20 0,005.20 Определяется пожарным извещателем 0,005.1 Определяется пожарным извещателем 0,005.20

Технология определения дыма Лазерная Лазерная Лазерная Оптический дымовой пожарный изве-щатель Лазерная Оптический дымовой пожарный изве-щатель Лазерная

Максимальная длина трубы в луче, м 200 200 50 60 60 80 200

Диаметр трубы, мм 25 25 25 25/40 25/40 25 25

Диаметр отверстия, мм 2.6 2.6 2.6 3.4 3.4 2.6 2.6

Максимальная защищаемая площадь, м2 2000 2000 500 800 800 1200 1600

Количество фильтров, шт. 2 2 2 Нет Нет 1 2

Количество уровней пожарной опасности, шт. 4 4 2 1 4 1 4

Габариты, мм 350 х 225 х 125 350 х 225 х 125 225 х 225 х 85 285 х 360 х 126 317 х 225 х 105 285 х 360 х 126 225 х 225 х 95

Вес, кг 4,0 4,0 1,9 2,7 3,4 2,7 3,5

Работа в сети VESDANet (99 устройств) VESDANet (99 устройств) VESDANet (99 устройств) Нет LaserNet (127 устройств) Нет VESDANet (99 устройств)

Режим автокомпенсации AutoLearntm программируется AutoLearntm программируется AutoLearntm программируется Нет Есть Нет Программируется

На российском рынке в настоящее время сертифицированы аспирационные пожарные извещате-ли следующих ведущих западных компаний:

"Vision Fire & Security" (Австралия) - извеща-тели пожарные дымовые аспирационные серии VESDA Laser PLUS (рис. 6), VESDA Laser SCANNER (рис. 7), VESDA Laser COMPACT (рис. 8);

"Schrack Seconet AG" (Австрия) - извещатели пожарные дымовые аспирационные RAS ASD

515-1 (FG030140), производство "Securiton-Hekatron", Германия (рис. 9);

"Fittich AG" (Швейцария) - извещатели пожарные дымовые аспирационные RAS ASD 515-1, производство "Securiton-Hekatron", Германия;

"MINIMAX GmbH" (Германия) - извещатели пожарные аспирационные АМХ 4002.

В таблице представлены сравнительные характеристики некоторых типов аспирационных пожарных извещателей.

Данная система предназначена для обнаружения начальной стадии пожара, передачи извещения о месте и времени его возникновения и при необходимости включения автоматических систем пожаротушения и дымоудаления.

Эффективной системой оповещения пожарной опасности является применение систем сигнализации.

Система пожарной сигнализации должна:

Быстро выявить место возникновения пожара;

Надёжно передавать сигнал о пожаре на приёмно-контрольное устройство;

Преобразовывать сигнал о пожаре в форму, удобную для восприятия персоналом охраняемого объекта;

Оставаться невосприимчивой к влиянию внешних факторов, отличающихся от факторов пожара;

Быстро выявлять и передавать извещение о неисправностях, препятствующих нормальному функционированию системы.

Средствами противопожарной автоматики оборудуют производственные здания категорий А, Б и В, а также объекты государственной важности.

Система пожарной сигнализации состоит из пожарных извещателей и преобразователей, преобразующих факторы появления пожара (тепло, свет, дым) в электрический сигнал; прёмно- контрольной станции, передающей сигнал и включающей световую и звуковую сигнализацию; а также автоматические установки пожаротушения и дымоудаления.

Обнаружение пожаров на ранней стадии облегчает их тушение, что во многом зависит от чувствительности датчиков.

Извещатели, или датчики, могут быть различных типов:

- тепловой пожарный извещатель – автоматический извещатель, который реагирует на определённое значение температуры и (или) скорость её нарастания;

- дымовой пожарный извещатель – автоматический пожарный извещатель, который реагирует на аэрозольные продукты горения;

- радиоизотопный пожарный извещатель – дымовой пожарный извещатель, который срабатывает вследствие влияния продуктов горения на ионизированный поток рабочей камеры извещателя;

- оптический пожарный извещатель – дымовой пожарный извещатель, который срабатывает вследствие влияния продуктов горения на поглощение или распространение электромагнитного излучения извещателя;

- пожарный извещатель пламени – реагирует на электромагнитное излучение пламени;

- комбинированный пожарный извещатель – реагирует на два (или больше) фактора пожара.

Тепловые извещатели подразделяются на максимальные , которые срабатывают при повышении температуры воздуха или охраняемого объекта до величины, на которую они отрегулированы, и на дифференциальные , которые срабатывают при определённой скорости нарастания температуры. Дифференциальные термоизвещатели обычно могут работать также в режиме максимальных.

Максимальные термоизвещатели характеризуются хорошей стабильностью, не дают ложных тревог и имеют относительно низкую стоимость. Однако они малочувствительны и даже при размещении на небольшом расстоянии от мест возможных загораний срабатывают со значительным запаздыванием. Тепловые извещатели дифференциального типа более чувствительны, однако их стоимость высока. Все тепловые извещатели должны размещаться непосредственно в рабочих зонах, поэтому они подвержены частым механическим повреждениям.


Рис. 4.4.6. Принципиальная схема извещателя ПТИМ-1: 1 – датчик; 2 – переменное сопротивление; 3 – тиратрон; 4 – добавочное сопротивление.

Оптические извещатели подразделяются на две группы: ИК – индикаторы прямого видения , которые должны «видеть» пожар, и фотоэлектрические дымовые . Чувствительные элементы индикаторов прямого видения не имеют практического значения, так как они, как и тепловые извещатели, должны располагаться в непосредственной близости от потенциальных очагов загорания.

Фотоэлектрические дымовые извещатели срабатывают при ослаблении светового потока в подсвечиваемом фотоэлементе в результате задымления воздуха. Извещатели этого типа могут быть установлены на расстоянии нескольких десятков метров от возможного очага пожара. Пылевые частицы, взвешенные в воздухе, могут привести к ложным срабатываниям извещателей. Кроме того, чувствительность прибора заметно снижается по мере осаждения тончайшей пыли, поэтому извещатели нужно регулярно осматривать и очищать.

Ионизационные дымовые извещатели для надёжной работы необходимо не реже чем раз в две недели подвергать тщательному осмотру и проверке, своевременно удалять отложения пыли и регулировать чувствительность. Газовые детекторы срабатывают при появлении газа или увеличении его концентрации.

Дымовые извещатели рассчитаны на обнаружение продуктов сгорания в воздухе. В устройстве имеется ионизационная камера. И при попадании в неё дыма от пожара ионизационный ток уменьшается, и извещатель включается. Время срабатывания дымового извещателя при попадании в него дыма не превышает 5 секунд. Световые извещатели устроены по принципу действия ультрафиолетового излучения пламени.

Выбор типа извещателя автоматической пожарной сигнализации и места установки зависит от специфики технологического процесса, вида горючих материалов, способов их хранения, площади помещения и т.п.

Тепловые извещатели могут быть использованы для контролирования помещений из расчёта один извещатель на 10 – 25 м 2 пола. Дымовой извещатель с ионизационной камерой способен (в зависимости от места установки) обслуживать площадь 30 – 100м 2 . Световыми извещателями можно контролировать площадь около 400 – 600м 2 . Автоматические извещатели, в основном, устанавливают на потоке или подвешивают на высоте 6 – 10м от уровня пола. Разработка алгоритма и функций системы пожарной сигнализации выполняется с учётом пожарной опасности объекта и архитектурно-планировочных особенностей. В данное время применяют следующие установки пожарной сигнализации: ТОЛ-10/100, АПСТ-1, СТПУ-1, СДПУ-1, СКПУ-1 и др.

Рис. 4.5.7. Схема автоматического дымового извещателя АДИ-1: 1,3 – сопротивления; 2 – электрическая лампа; 4 – ионизационная камера; 5 – схема включения в электрическую сеть

Стоимость ущерба от пожара даже в отдельно взятом помещении может достигать внушительных сумм. Например, когда в помещениях находится оборудование, цена которого значительно превышает расходы на устройство пожарной защиты. Традиционные способы тушения огня в этом случае непригодны, поскольку их использование грозит не меньшим ущербом, чем сам пожар.

Именно поэтому растет потребность в системах раннего обнаружения возгорания, которые смогут выявить признаки огня в зачаточной стадии и принять оперативные меры по его предотвращению. Аппаратура раннего обнаружения пожара выполняет свои функции за счет сверхчувствительных датчиков. Это датчики температуры, дыма, а также химические, спектральные (реагирующие на пламя) и оптические. Все они являются частью единой системы, направленной на раннее обнаружение и сверхоперативную локализацию возгорания.

Важнейшую роль здесь играет свойство устройств раннего обнаружения пожара по постоянному мониторингу химического состава воздуха. При горении пластмассы, оргстекла, полимерных материалов состав воздуха резко изменяется, что и должна зафиксировать электроника. Для подобных целей широко применяются полупроводниковые газочувствительные сенсоры, материал которых способен изменять электрическое сопротивление от химического воздействия.

Системы с использованием полупроводников все время совершенствуются, рынок полупроводников постоянно растет, о чем свидетельствуют показатели финансовых рынков. Современные полупроводниковые сенсоры способны уловить минимальные концентрации веществ, выделяемых при горении. В первую очередь это водород, оксид и диоксид углерода, ароматические углеводороды.

На обнаружении первых признаков пожара работа систем пожаротушения только начинается. Аппаратура обнаружения действует четко и быстро, заменяя собой нескольких человек и исключая человеческий фактор при тушении огня. Эти устройства в идеальном случае связаны со всеми инженерными системами здания, которые могут ускорить или замедлить распространение пожара. Система раннего обнаружения при необходимости полностью отключит вентиляцию помещения, в необходимом количестве - элементы электроснабжения, включит тревогу, обеспечит своевременную эвакуацию людей. И самое главное - запустит комплекс пожаротушения.

На самых ранних стадиях потушить огонь намного легче, чем на последующих, и на это может уйти всего несколько минут. Тушение пожара на зачаточных стадиях может производиться с помощью методов, исключающих физическое разрушение объектов, находящихся в помещении. Таким методом является, например, тушение с помощью замены кислорода на негорючий газ. В этом случае сжиженный газ при переходе в летучее состояние понижает температуру в помещении или на конкретном участке, а также подавляет реакцию горения.

Противопожарные двери - неотъемлемая часть любой системы пожарной безопасности. Это - элемент конструкции, препятствующий распространению пожара в соседние помещения в течение определенного времени.

Устройства раннего обнаружения возгорания обязательны в первую очередь для обеспечения безопасности людей. Необходимость их доказана многочисленным и горьким опытом. Пожар - одно из самых непредсказуемых стихийных бедствий, о чем говорит вся история человеческой цивилизации. В наше время этот фактор не стал менее актуальным. Напротив, сегодня даже локальное возгорание может нанести катастрофические убытки, связанные с выходом из строя дорогостояшего оборудования и техники. Именно поэтому выгодно вложить деньги в такую систему раннего обнаружения.

К сожалению, у нас далеко не все так же понимают тех преимуществ, которые дают адресно-аналоговые системы, а некоторые вообще сводят их достоинства к "заботе о курильщиках". Поэтому давайте так же раз посмотрим, что же все-таки нам дают адресно-аналоговые системы.

Важно не только вовремя обнаружить, но и вовремя предупредить

Напомню, что различают три класса систем пожарной сигнализации: неадресные, адресные, адресно-аналоговые.

В неадресных и адресных системах "решение о пожаре" принимается непосредственно самим извещателем и затем передается на приемно-контрольный прибор.

Адресно-аналоговые системы являются по своей сути телеметрическими системами. На приемно-контрольный прибор передается значение контролируемого извещателем параметра (температура, задымленность в помещении). Приемно-контрольный прибор постоянно отслеживает состояние окружающей среды во всех помещениях здания и на основании этих данных принимает решение не только о формировании сигнала "Пожар", но и сигнала "Предупреждение". Особо подчеркнем, что "решение" принимает не извещатель, а приемно-контрольный прибор. Теория гласит, что если построить график интенсивности пожара в зависимости от времени, то он будет иметь вид типа параболы (рис. 1). На начальном этапе развития пожара его интенсивность невелика, затем она возрастает и далее наступает лавинообразный цикл. Если бросить непотушенный окурок в корзину с бумагами, сначала будет наблюдаться их тление с выделением дыма, затем появится пламя, оно перекинется на мебель и далее начнется интенсивное развитие пожара, с которым справиться уже непросто.

Получается, что если возгорание выявлено на ранней стадии, его легко ликвидировать с помощью стакана воды или обычного огнетушителя и ущерб от него будет минимален. Именно это и позволяют сделать адресно-аналоговые системы. Если, например, неадресный (или адресный) тепловой извещатель обеспечивает формирование сигнала "Пожар" при температуре 60 °С, то до достижения этого значения дежурный не видит на приемноконтрольном приборе никакой информации о том, что происходит в помещении. А все - таки это предполагает уже значительный очаг пожара. Аналогичная ситуация наблюдается и с дымовыми извещателями, где должен быть достигнут необходимый уровень задымленности.

Адресное не значит адресно-аналоговое

Адресно-аналоговые системы, постоянно контролируя состояние среды в помещении, немедленно выявляют начавшееся изменение температуры или задымленности и выдают дежурному предупреждающий сигнал. Поэтому адресно-аналоговые системы обеспечивают раннее обнаружение пожара. Это значит, что пожар легко ликвидировать с минимальным ущербом для здания.

Подчеркнем, что "водораздел" находится не м. неадресными системами, с одной стороны, и адресными и адресно-аналоговыми – с другой, а м. адресно-аналоговыми и остальными системами.

В реальных адресно-аналоговых приборах имеется принцип. возможность индивидуально задавать не только уровни формирования сигналов "Пожар" и "Предупреждение" для каждого извещателя, но и определять логику их совместной работы. Другими словами, мы получаем в руки инструмент, позволяющий оптимальным образом формировать систему раннего обнаружения пожара для каждого объекта с учетом его индивидуальных особенностей, т.е. мы имеем принцип. возможность оптимально строить систему пожарной безопасности объекта.

Попутно решается так же ряд важных задач, например контроль работоспособности извещателей. Так, в адресно-аналоговой системе в принципе не может быть неисправного извещателя, не выявленного приемно-контрольным прибором, так как все время извещатель должен передавать определенный сигнал. Если к этому добавить мощную самодиагностику самих извещателей, автоматическую компенсацию запыленности и выявление запыленных дымовых извещателей, то становится очевидным, что эти факторы только повышают эффективность адресно-аналоговых систем.

Основные особенности

Важным компонентом адресно-аналоговых приборов является построение шлейфов сигнализации. протокол работы шлейфа является ноухау фирмы и составляет коммерческую тайну. Вместе с тем именно он во многом определяет характеристики системы. изучим наиболее характерные особенности адресно-аналоговых систем.

Число извещателей в шлейфе

Обычно оно составляет от 99 до 128 и ограничено энергетическими возможностями организации питания извещателей. В ранних моделях адресация извещателей производилась с помощью механических переключателей, в более поздних моделях переключатели отсутствуют, а адрес заносится в энергонезависимую память датчика.

Кольцевой шлейф сигнализации

В принципе большинство адресноаналоговых приборов способны работать и с радиальным шлейфом. но есть вероятность "потерять" большое количество извещателей из-за обрыва шлейфа. Поэтому кольцевой шлейф – средство повышения живучести системы. При его обрыве прибор формирует соответствующее извещение, но обеспечивает работу с каждым полукольцом, сохраняя тем самым работоспособность всех извещателей.

Устройства локализации коротких замыканий

Это тоже средство повышения "живучести" системы. Обычно данные устройства устанавливаются через 20–30 извещателей. При коротком замыкании в шлейфе ток в нем возрастает, что фиксируется двумя устройствами локализации, и неисправный участок отключается. из строя выходит лишь сегмент шлейфа м. двумя устройствами локализации коротких замыканий, а вся остальная его часть остается работоспособной за счет кольцевой организации подключения.

В современных системах встроенным устройством локализации коротких замыканий оснащен каждый извещатель или модуль. При этом за счет существенного снижения цен на электронные компоненты стоимость датчиков фактически не увеличилась. Такие системы практически не страдают от коротких замыканий шлейфов.

Стандартный набор извещателей

Он, включает в себя дымовой оптоэлектронный, тепловой максимальной температуры, тепловой максимально-дифференциальный, комбинированный (дымовой плюс тепловой) и ручной извещатели. Этих извещателей обычно достаточно, чтобы защитить основные виды помещений в здании. Некоторые производители дополнительно предлагают и достаточно экзотические виды датчиков, например, адресно-аналоговый линейный извещатель, оптический дымовой извещатель для помещений с высоким уровнем загрязнения, оптический дымовой извещатель для взрывоопасных помещений и др. Все это расширяет сферу применения адресно-аналоговых систем.

Модули контроля неадресного подшлейфа

Они позволяют использовать неадресные извещатели. Это сокращает стоимость системы, но при этом, естественно, свойства, присущие адресно-аналоговой аппаратуре, теряются. В ряде случаев такие модули могут с успехом использоваться для подключения обычных линейных дымовых извещателей или создания взрывобезопасных шлейфов.

Модули управления и контроля

Они включаются непосредственно в шлейфы сигнализации. Обычно число модулей соответствует числу извещателей в шлейфе, а их адресное поле является дополнительным и не накладывается на адреса извещателей. В некоторых системах адресное поле извещателей и модулей является общим.

Общее количество подключенных модулей может составлять несколько сотен. Именно это свойство и позволяет на базе адресно-аналоговой системы пожарной сигнализации СПС осуществить интеграцию систем автоматической пожарной защиты здания (рис. 2).

При интеграции осуществляется управление исполнительными устройствами и контроль их срабатывания. Количество точек контроля и управления как раз и составляет несколько сотен.

Разветвленная логикаформирования управляющихсигналов

Это непременный атрибут адресноаналоговых приемно-контрольных приборов. Именно мощные логические функции обеспечивают построение единой системы автоматической пожарной защиты здания. Среди этих функций и логика формирования сигнала "Пожар" (например, по двум сработавшим извещателям в группе), и логика включения модуля управления (например, при каждом сигнале "Пожар" в системе или при сигнале "Пожар" в данной группе), и принцип. возможность задания временных параметров (например, при сигнале "Пожар" включить через время Т1 модуль управления М на время Т2). Все это позволяет эффективно строить на базе стандартных элементов даже мощные комплексы газового пожаротушения.

И не только раннее обнаружение

Сам принцип построения адресно-аналоговых систем позволяет помимо раннего обнаружения пожара получить так же ряд уникальных качеств, например, повышение помехоустойчивости системы. Поясним это на примере.

На рис. 3 представлены несколько последовательных циклов опроса (n) прибором теплового адресно-аналогового извещателя. Для простоты понимания по оси ординат отложим не длительность сигнала от извещателя, а сразу соответствующее ей значение температуры. Пусть на цикле опроса 4 прошел ложный сигнал от извещателя или искажение длительности ответа извещателя под воздействием электромагнитных помех что воспринятое прибором значение соответствует температуре 80 °С. по пришедшему ложному сигналу прибором должен быть сформирован сигнал "Пожар", т.е. произойдет ложное срабатывание аппаратуры.

В адресно-аналоговых системах этого можно избежать за счет введения алгоритма усреднения. Для примера введем усреднение по трем последовательным отсчетам. значение параметра для "принятия решения" о пожаре будет являться суммой значений по трем циклам, поделенной на 3:

  • для циклов 1, 2, 3 Т=60:3=20 °С – ниже порога;
  • для циклов 2, 3, 4 Т=120:3=40 °С – ниже порога;
  • для циклов 3, 4, 5 Т=120:3=40 °С – ниже порога.

То есть при пришедшем ложном отсчете сигнал "Пожар" не сформирован. При этом хочется обратить особенное внимание на то, что поскольку "решение" принимает приемно-контрольный прибор, никакие пересбросы и перезапросы извещателей не нужны.

Заметим, что если пришедший сигнал не является ложным, значит на циклах 4 и 5 значение параметра соответствует 80 °С, то при данном усреднении сигнал будет сформирован, так как Т=180:3=60 °С, значит соответствует порогу формирования сигнала "Пожар".

Что в итоге?

Итак, мы убедились, что благодаря своим уникальным свойствам адресноаналоговые системы являются эффективным средством обеспечения пожарной безопасности объектов. Число извещателей в таких системах может составлять несколько десятков тысяч, что достаточно для самых грандиозных проектов.

Рынок адресно-аналоговых систем за рубежом за последние несколько лет имеет устойчивую тенденцию к росту. Доля адресно-аналоговых систем в общем объеме производства уверенно превысила 60%., массовый выпуск адресноаналоговых извещателей привел к снижению их стоимости, что явилось дополнительным стимулом к расширению рынка.

К сожалению, у нас доля адресно-аналоговых систем составляет по различным оценкам от 5 до 10%. Отсутствие системы страхования и действующие нормативы не способствуют внедрению качественной аппаратуры и часто применяется наиболее дешевая техника. Тем не менее определенные сдвиги уже наметились, и думается, что мы стоим на пороге кардинального изменения рынка. Только за последние годы стоимость оптического дымового адресно-аналогового извещателя в России уменьшилась примерно в 2 раза, что делает их более доступными. Без адресно-аналоговых систем немыслимо обеспечение безопасности высотных зданий, многофункциональных комплексов и ряда других категорий объектов.

Системы противодымнои защиты зданий: проблемы проектирования
Со счетов списывать рано